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ABSTRACT OF DISSERTATION

Routing and Security in Mobile Ad Hoc Networks

A Mobile Ad hoc Network (MANET) consists of a set of nodes which can form
a network among themselves. MANETs have applications in areas such as mili-
tary, disaster rescue operations, monitoring animal habitats, etc. where establishing
fixed communication infrastructure is not feasible. Routing protocols designed for
MANETs can be broadly classified as position-based (geographic), topology-based
and hybrid. Geographic routing uses location information of nodes to route mes-
sages. Topology-based routing uses network state information for route discovery
and maintenance. Hybrid routing protocols use features in both position-based and
topology-based approaches. Position-based routing protocols route packets towards
the destination using greedy forwarding (i.e., an intermediate node forwards pack-
ets to a neighbor that is closer to the destination than itself). If a node has no
neighbor that is closer to the destination than itself, greedy forwarding fails. In this
case, we say there is void. Different position-based routing protocols use different
methods for dealing with voids. Topology-based routing protocols can be classified
into on-demand (reactive) routing protocols and proactive routing protocols. Gen-
erally, on-demand routing protocols establish routes when needed by flooding route
requests throughout the entire network, which is not a scalable approach. Reactive
routing protocols try to maintain routes between every pair of nodes by periodically
exchanging messages with each other which is not a scalable approach also. This
thesis addresses some of these issues and makes the following contribution.

First, we present a position-based routing protocol called Greedy Routing Protocol
with Backtracking (GRB) which uses a simple backtracking technique to route around
voids, unlike existing position-based routing protocols which construct planarized
graph of the local network to route around voids. We compare the performance
of our protocol with the well known Greedy Perimeter Stateless Routing (GPSR)
protocol and the Ad-Hoc On-demand Distance Vector (AODV) routing protocol as
well as the Dynamic Source Routing (DSR) protocol. Performance evaluation shows
that our protocol has less control overhead than those of DSR, AODV, and GPSR.
Performance evaluation also shows that our protocol has a higher packet-delivery
ratio, lower end-to-end delay, and less hop count, on average, compared to AODV,
DSR and GPSR. We then present an on-demand routing protocol called “Hybrid On-
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demand Greedy Routing Protocol with Backtracking for Mobile Ad-Hoc Networks”
which uses greedy approach for route discovery. This prevents flooding route requests,
unlike the existing on-demand routing protocols. This approach also helps in finding
routes that have lower hop counts than AODV and DSR. Our performance evaluation
confirms that our protocol performs better than AODV and DSR, on average, with
respect to hop count, packet-delivery ratio and control overhead.

In MANETs, all nodes need to cooperate to establish routes. Establishing secure
and valid routes in the presence of adversaries is a challenge in MANETs. Some
of the well-known source routing protocols presented in the literature (e.g., Ariadne
and endairA) which claim to establish secure routes are susceptible to hidden channel
attacks. We address this issue and present a secure routing protocol called SAriadne,
based on sanitizable signatures. We show that our protocol detects and prevents
hidden channel attacks.

KEYWORDS: MANET, Position-Based Routing, On-demand Routing, Hybrid Rout-
ing, Secure Routing.

Author’s signature: Baban Ahmed Mahmood

Date: December 9, 2016
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Chapter 1 Introduction

A mobile ad hoc network (MANET) consists of a set of nodes each of which is capable

of being both a client and a router. The nodes form a network among themselves

without the use of any fixed infrastructure, and communicate with each other by

cooperatively forwarding packets on behalf of others. Routing protocols designed

for MANETs need to be scalable, secure, robust, and have low routing overhead.

Routing protocols designed for MANETs can be broadly classified as geographic

routing protocols and topology-based routing protocols. Figure 1.1 shows a brief

classification of routing protocols for MANETs [5].

1.1 Position Based Routing Protocols

In geographic routing protocols, nodes do not maintain information related to network

topology (i.e., they are topology independent). They only depend on the location

information of nodes to forward packets. Generally [6], nodes need their own location,

their neighbors’ locations, and the location of the destination node to which the packet

needs to be forwarded. Using this location information, routing is accomplished by

forwarding packets hop-by-hop until the destination node is reached [7]. Greedy

forwarding, like the one used in GPSR [8], is one of the main strategies used in

geographic routing protocols. In Greedy forwarding, an intermediate node on the

route forwards packets to the next neighbor node that is closer to the destination

than itself.
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Figure 1.1: Routing Protocols for MANETs.

Different geographic protocols which use different greedy forwarding strategies are

described below.

• Distance Strategy. Euclidean distance is mainly used in greedy forwarding to

minimize the distance packets traverse from the source node to the destination

node.

• Progress Strategy. This strategy tries to maximize the distance between the

source node S and the projection A′ of a neighboring node A (chosen for for-

warding) onto the straight line joining S and the destination node D as shown

in Figure 1.2. The larger the distance between a node holding a packet and

the neighboring node’s (chosen for forwarding) projection, the faster will be

the progress of the packet towards the destination (S forwards to node A in

Figure 1.2). The Most Forward within Radius (MFR) strategy used in [9] is

an example of routing protocol using this strategy. Another protocol that uses

the progress strategy is the Nearest with Forward Progress (NFP) [10] protocol.

2
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Figure 1.2: Greedy Routing Strategies [1]

.

Under NFP, a sender S forwards packets to the nearest neighboring node that is

closer to the destination node than S (e.g., S forwards to node C in Figure 1.2).

• Direction-based Strategy. This strategy is also called compass routing [11]. It

minimizes the spatial distance that packets travel by using deviation as its cri-

teria to forward packets. The deviation is the angle between the line connecting

the source node and the next hop and the straight line connecting the source

node and the destination node. Under this approach, the neighbor that is closer

to the line joining the source node and the destination node is selected as next

hop.

1.2 Topology Based Routing Protocols

Topology based routing protocols depend on current topology of the network. Topology-

based routing is also known as table-based routing. Topology-based routing can be

3
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classified into proactive routing protocols, reactive routing (on-demand) protocols,

and hybrid routing protocols [12].

In Proactive Routing Protocols, like DSDV [13], nodes use pre-established table-

based routes [14]. Therefore, routes are deemed reliable and nodes do not wait for

route discovery which cuts off latency. However, overhead incurred for route con-

struction and maintenance can severely degrade performance, limit scalability, and

the routing table may consume lot of memory as the network grows. In addition

to these limitations, frequent topology changes due to node movement may lead to

out-dated or stale routes in the routing table which may result in packet loss.

In Reactive Routing Protocols, also called on-demand routing protocols, senders

find and maintain a route to a destination only when they need it. Thus, reactive

routing protocols such as AODV [15] try to establish a route to a destination only

when needed. Reactive routing needs less memory and storage capacity than proac-

tive protocols. However, in network areas where nodes can move more unpredictably

and frequently, route discovery may fail since the route can be long and links may

break due to node mobility or when facing obstacles [16]. Moreover, the delay caused

by route discovery for each data traffic can increase latency.

On the other hand, Geographic Routing Protocols require only the location in-

formation of nodes for routing. They do not require a source node to establish a

route to the destination before transmitting packets. Unlike on-demand routing pro-

tocols, they do not depend on flooding route request messages to establish routes.

This feature helps geographic routing protocols reduce the extra overhead imposed

by topology constraints for route discovery [2, 7]. A node only needs to know the

4
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position of its neighbors and the position of the destination to forward packets. This

helps the protocols adapt to any topology changes and link failures easily since the

next hop is decided locally. Therefore, geographic routing protocols generally are

more scalable than topology based routing protocols [17, 18, 1].

1.3 Hybrid Routing Protocols

Hybrid routing protocols [19] combine features of both position-based routing and

topology-based routing protocols. These features complement each other such that

the resulted hybrid routing protocol is loop free and scalable, incurs lower control

overhead, and can find a path to the destination as long as the network is not parti-

tioned.

1.4 Secure Routing Protocols

A secure routing protocol enables nodes to exchange control information and data in

the presence of adversaries which try to disrupt the functioning of the routing proto-

col. Several mechanisms have been proposed to provide secure routing for MANETs

([20] presents a survey of secure routing protocols).

Generally, attacks on routing protocols in MANETs fall into one of the following

two categories [20]:

1. Resource-consumption attacks. In this category, an attacker injects packets

into the network attempting to consume network and/or node resources such

as bandwidth, memory, and computation power.

5
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Injecting extra data packets into the network is an example of resource consump-

tion attacks. When forwarded, these packets consume bandwidth unnecessarily.

Another example is when an attacker injects extra control packets into the net-

work. When nodes process and forward these control packets, more bandwidth

and/or computational resources are consumed than those consumed by injecting

extra data packets.

2. Routing-disruption attacks. In this category, an attacker tries to route legiti-

mate data packets in dysfunctional ways.

1.4.1 Attacks on Routing in MANETs

To develop a good and secure routing protocol, one needs to understand the possible

type of attacks on routing protocols. Below, we explain some attacks designed to

disrupt routing protocols in MANETs.

• Routing Loop

An attacker sends forged routing packets causing data packets to traverse nodes

in a cyclical path without reaching their destinations. This attack consumes

energy and bandwidth in addition to causing data packets loss [21].

• Blackhole Attack

In this attack, a malicious node responds to a route request packet claiming

that it has a valid and fresh route to the destination node. In this case, an

attacker could trick a sender into routing all data packets to the attacker which

discards them.

6
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• Grayhole Attack

It is a special case of a blackhole attack where an attacker could create a gray

hole where it selectively drops some control and/or data packets. For example,

forwarding some data packets and all control packets or forwarding all control

packets but not data packets [21].

• Blackmail Attack

In MANETs, nodes can keep track of perceived malicious nodes in a blacklist at

each node, similar to watchdog and pathrater [22]. An attacker could blackmail

(report) a good node, telling other nodes to add that legitimate node to their

blacklists. This attack results in isolating legitimate nodes from the network.

• Gratuitous Detour Attack

An attacker may also attempt to cause a node to use detours (suboptimal

routes) or may attempt to partition the network by injecting forged routing

packets to prevent one set of nodes from reaching another. An attacker may

attempt to make a route through itself appear longer by adding virtual nodes

to the route [21].

1.5 Applications of MANETs

MANETs have applications in areas such as military, disaster rescue operations, mon-

itoring animal habitats, etc. where establishing fixed communication infrastructure

is not feasible or the preexisting infrastructure has been destroyed by a disaster or in

7
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Figure 1.3: Example of Dead End in Greedy Forwarding.

war [16, 23, 24, 25, 26, 27]. Compared to wired networks, establishing MANETs is

less expensive and hence are attractive.

1.6 Problems Addressed and Solved in this Dissertation

Greedy forwarding, the primary packet forwarding strategy used by geographic rout-

ing protocols, may fail in low density networks, networks with non-uniformly dis-

tributed nodes, and/or networks where obstacles are present. Therefore, the main

problem with greedy forwarding strategy is that it does not guarantee packet delivery

to the destination because of the dead end phenomenon even if there is a route to

the destination. Figure 1.3 shows an example of dead end (void) problem. When

the source node S needs to send packets to the destination node D, it forwards the

packets greedily to a node that is closer to the destination than itself. On receiving

the packets, each subsequent node does the same. When the packets reach node B,

8
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Figure 1.4: Example of Planarization where a Unidirectional Link Causes Routing
Failure.

it finds that none of its neighbors are closer to the destination node D than itself and

D is outside the transmission range of node B. This means there is a void between B

and D in the direction towards D as shown in Figure 1.3. Even though there is a valid

path from S to D through intermediate nodes 1,2,3,4,5, and 6, greedy forwarding

cannot use it. This means, under pure greedy forwarding, packets may be dropped

even though there are valid paths to destination nodes.

Generally, position-based routing protocols use planarization and face routing [8,

18] to go around voids. Planarization involves constructing the planar graph of local

network. Graphs are generally planarized using the Gabreil Graph (GG) [28] or

the Relative Neighborhood Graph (RNG) [29]. However, planarization may fail to

generate bidirectional, connected, and/or cross link free local graphs as observed by

Kim et al. and Frey et al. [30, 31]. This may be the result of node’s incorrect estimate

of its location or irregular communication range as a result of radio-opaque obstacles

or transceiver differences.

As shown in Figure 1.4, a unidirectional link can cause an infinite loop during face

9
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Figure 1.5: Example of Planarization where a Disconnected Link Causes Routing
Failure.

traversal. In this example, when the source node S needs to send data packets to the

destination node D, based on greedy forwarding, it sends that data packet to node V .

Node V is a dead end for that packet, hence it switches to face routing and forwards

the data packets to node C. In this case, when C constructs the planar graph of the

local network using GG, it cannot see the witness B in the circle whose diameter is

the distance between A and C because of the obstacle shown in Figure 1.4. Therefore,

C generates a link to node A. However, node A does not create a link to node C

in its local graph because it can see the witness B in the circle. Therefore, node C

can forward the data packets to node A which in turn forwards them to node B and

based on face routing, node B returns the packet to node A. Since node A does not

have a link to node C in the local graph, it returns the packets to node B and as a

result, the data packets loop.

Routing can also fail because of disconnected links as shown in Figure 1.5. In this

example, source S needs to send data packets to destination D. When packets arrive

at node V , they face a dead end and switch to face routing. From node V ’s view, B

is a witness and from C’s view, D is a witness. Therefore the link between V and C

10
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Figure 1.6: Example of Planarization where a Cross Link Causes Routing Failure.

is removed in the planarized graph of local network and as a result, the local graph

is disconnected and packets cannot travel to D.

Another scenario where routing may fail is shown in Figure 1.6. In this example,

when node S needs to send data packets to destination D, it first forwards the packet

to next closer neighbor N which faces void and hence, creates a local planner graph.

The obstacle shown in Figure 1.6 hides D from both N and C and as a result, a link

between these two nodes is created which crosses the link between D and G. Then,

based on face routing and right hand rule, N returns the packet back to S which in

turn forwards it to B. From B, the packet is forwarded to C and then to N where it

loops.

This means that face routing cannot always forward packets when they face void

even when alternative valid paths exist. We address this problem and present an

algorithm which uses a simple backtracking technique to route around voids.

11
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MANETs are vulnerable to attacks that aim to disrupt the functionality of the

routing protocols. The main problem occurs when adversarial nodes intentionally

hide intermediate nodes to create routes that are not valid. Several secure routing

protocols have been proposed in the literature to detect this hidden channel attack.

However, many of them do not detect and prevent all types of attacks. We address

this issue and propose a novel, secure routing protocol for MANETs. Following are

the contributions of the dissertation.

1. GRB When pure greedy forwarding is used, packets are dropped when they

face voids making recovery procedures necessary. The existing protocols mainly

depend on face routing [8, 18] to deal with voids. However, in addition to

failing to go around voids in some scenarios as explained above, face routing

can incur high processing cost and high end-to-end delay. We address these

issues and propose Greedy Routing Protocol with Backtracking for MANETs

(GRB). GRB [32] is a novel and simple position based routing protocol which

allows each node to forward data packets to its best neighbor possible until the

destination is reached. Unlike GPSR, GRB uses less computation to determine

the next hop when the packet faces a void.

2. HGRB Many of the on-demand routing protocols, such as DSR [33] and

AODV [15], flood route requests throughout the network for route discovery

which results in high control overhead due to redundant propagation of route

requests. On the other hand, geographic routing protocols construct a pla-

narized graph of the local network to route around voids using that graph,

12
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resulting in high control overhead. This dissertation addresses these issues and

proposes a novel on-demand routing protocol called Hybrid Greedy On-demand

Routing Protocol with Backtracking (HGRB). HGRB [34] inherits the best of

both topology-based and position-based routing paradigms. HGRB uses geo-

graphic approach for forwarding route requests (RREQs) during route discovery

and uses simple backtracking to forward RREQs around voids.

3. SAriadne The existing secure source routing protocols such as Ariadne [21]

and endairA [3] are prone to hidden channel attacks. Adversarial nodes can

shorten the actual route by hiding genuine nodes from the route which results

in creating invalid routes that are accepted by source nodes as valid routes.

This dissertation addresses this issue and presents a novel protocol based on

sanitizable signatures called SAriadne [35] that establishes secure and valid

routes in MANETs.

1.7 Organization of the Dissertation

The rest of this dissertation is organized as follows: In Chapter 2, the related work

and their merits and demerits are presented. In Chapter 3, Greedy Routing Protocol

with Backtracking for MANETs (GRB) [32], and its performance evaluation results

are presented. In Chapter 4, Hybrid On-demand Greedy Routing Protocol with

Backtracking for MANETs (HGRB) [34], and its performance analysis are presented.

In Chapter 5, SAriadne [35], A Secure Source Routing Protocol to Prevent Hidden-

Channel Attacks, and its security analysis are presented. Finally, summary and

13
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conclusion are presented in Chapter 6.

Copyright c© Baban Ahmed Mahmood, 2016.
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Chapter 2 Related Work

In this chapter, we discuss recent works related to the work presented in the disser-

tation.

In the past, several researchers have surveyed geographic and hybrid routing proto-

cols. Cadger et al.’s survey [17] discusses different design issues in geographic routing

as addressed by different routing protocols [7, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45];

they also focus on how the existing geographic routing protocols address issues such

as security [46, 47, 48], mobility of nodes [49, 50, 51], power consumption [52, 53], and

quality of service [54, 55]. Manghsoudlou et al. [1] discuss different greedy forward-

ing strategies and recovery mechanisms used in geographic routing protocols. They

focused on discussing different strategies that can be used as alternatives to face

routing. The greedy forwarding strategies discussed by them are [9, 10, 56]; they also

survey protocols [8, 38, 37, 57, 58, 59] using different variations of face routing using

traversals along planar graphs; other variations discussed include geometric recovery

strategy [60], flooding based handling of voids [61, 62], cost-based category [63, 64, 65],

heuristic void handling [66, 67], and hybrid strategy [68]. Mauve et al. [69] discuss

two major areas: geographic routing protocols and location service protocols. They

compare the protocols in each area with other protocols in the same area. Differ-

ent forwarding strategies discussed include greedy forwarding protocols [9, 10, 56],

restricted directional flooding [70], hierarchical routing [67, 71], and grid routing pro-

tocols [66]. They surveyed different location service protocols [14, 72, 68, 73, 74]
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Figure 2.1: Example Illustrating a Node’s Hop ID (a Vector) [2].

also.

In the rest of the dissertation, we interchangeably use the terms “dead end”,

“void”, “local maximum”, “local minimum”, and “obstacle”. All these terms mean

that there is no node closer to the destination than the current node and the desti-

nation node is outside the transmission range of the current node.

2.1 Position-Based Routing Protocols

In this section, we review several geographic routing protocols that use nodes’ position

information for routing data packets.
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2.1.1 GPSR: Greedy Perimeter Stateless Routing for Wireless Networks

GPSR [8], a well known geographic routing protocol proposed by Karp and Kung, uses

greedy forwarding as the default forwarding strategy. When a packet confronts a void

(i.e., when greedy forwarding fails), they planarize the local topology graph either

by constructing the Relative Neighborhood Graph (RNG) or Gabriel Graph (GG)

of the graph and use those graphs to route around the void. However, constructing

the graph could be time consuming and results in high control overhead. Also, when

GPSR faces a void it may fail to go around the void when the dead end node has no

neighbors other than the one that sent the packet.

We address these issues and propose and novel greedy forwarding with backtrack-

ing technique that does not need to construct graphs and can forward packets around

voids.

2.1.2 Hop ID: A Virtual Coordinate-Based Routing for Sparse MANETs

Zhao et al. [2], proposed a routing protocol called Hop ID Routing (HIR). In this

protocol, the authors try to solve the dead end problem using virtual coordinate-

based routing. They build a multidimensional coordinate system based on which they

find the Hop ID distance between each pair of nodes in the network. The protocol

selects specific nodes in the network, as landmark nodes. Each node has a hope ID,

a vector of length equal to the number of preselected landmarks. The entry in each

dimension of the node’s vector represents the distance from that node to one of the

landmarks. Figure 2.1 has three landmarks namely L1, L2, and L3. Since there are
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three landmarks, each node will be associated with a three dimensional vector. Node

H, for example, is 2 hops away from L1, 1 hop away from L2, and 5 hops away from

L3; therefore, its vector is (215). A predefined hash function is used to map each

node to one of the landmarks. The authors used a distance function, called power

distance, which helps to eliminate many dead ends. In HIR, each node can get a

unique ID by hashing its IP address. Two different techniques are proposed to select

Landmarks: Random Landmark Selection and Peripheral Landmark Selection.

In random landmark selection, a specific node C which is relatively stationary

is chosen to become a coordinator. The coordinator C then uses a hash function

to generate m random IDs, called landmark IDs. Node C then floods a CENTER

packet (which contains the landmark IDs) throughout the network. Upon receiving

the CENTER packet, each node inserts its upstream node ID and rebroadcasts the

CENTER packet. Using this flooding method, a tree rooted at the coordinator C is

built.

Peripheral Landmark Selection is similar to the Random Landmark Selection ex-

cept that only the perimeter nodes are allowed to send CANDIDATE packets. A

node becomes perimeter node if it is farther away from the coordinator C than its

neighbors. In this technique, a shortest path tree rooted at C is built by finding the

perimeter nodes.

This protocol does not scale well because it uses a central packet flooding technique

initiated by a designated node to select LANDMARKs. Selecting landmarks results

in proportionally high control overhead. However, data packet forwarding process

does not produce additional control overhead to the protocol.

18
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2.1.3 A Novel Location-Fault-Tolerant Geographic Routing Scheme for

Wireless Ad Hoc Networks

Lin and Kus [6] proposed a location-fault-tolerant geographic routing protocol (LGR)

using both traditional geographic routing and position-based clustering technique.

Mobile nodes are assumed to obtain location information using some location ser-

vice. However, since nodes may move at any time and location update may not be

triggered in time, inaccurate location information can be used, causing routing prob-

lems. Wrong greedy decision and planarization collapse are two intrinsic problems.

Wrong decision incurs routing loops and packet dropping. In a planar graph, there

are no cross links among the nodes preventing routing loops. Planarization collapse,

on the other hand, degrades performance and may result in routing loops. All these

problems occur due to incorrect location information. To overcome such deficien-

cies, LGR benefits from fixed cluster positions instead of node’s accurate reported

locations.

The network area is divided into several polygons, each called a cluster. Each

cluster has a center with coordinates defined as cluster position that could be used

as cluster ID. A node close to the cluster center is designated as cluster head (CH).

CH manages the locations of nodes belonging to that cluster. While moving within

a cluster, a node needs to propagate its location only to the nodes that reside in

that cluster. A node’s cluster position is updated when it leaves its own cluster

and enters another cluster. Routing is performed using two steps. The first step is

global geographic routing in which packets are routed from one cluster to another
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cluster that is closer to the destination depending on cluster positions. Messages are

forwarded based on right-hand rule in case of dead end cluster (i.e., there are no

clusters closer to the destination cluster than the current one). The second step is

called local gradient routing in which packets are routed between clusters. A CH

broadcasts a tree-building message to its cluster nodes and to all the nodes covered

by its neighboring clusters. After the message reaches all neighbor CHs, nodes would

have set up a route to its cluster head and the cluster heads of its neighboring clusters.

When a source node sends a packet to a destination node, it sets the destination’s

cluster position (DCP) field of the packet. Any node U receiving the packet checks

the DCP field to see whether its cluster is the intended one or not. If its cluster

is the intended one, U sends the packet to its cluster head based on local gradient

routing. Then the packet is routed to the destination node by the cluster head.

Otherwise, U determines the next cluster position (NCP). A next cluster is selected

from the neighboring clusters through global geographic routing scheme. This process

continues until the destination cluster is reached if there is a path, or the packet is

dropped.

2.1.4 Localized Load-Aware Geographic Routing in Wireless Ad Hoc

Networks

Li et al. [75] proposed localized load-aware geographic routing based on the concept

of cost-to-progress ratio in greedy routing (CPR-Routing). Load could be defined

according to the resource availability. It may be storage capacity, processor usage,

traffic amount, link quality, power consumption, and/or activity. In this paper, the
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authors use communication activities for defining load. A load limit L is dedicated

for each node. Each node’s load L is initially zero and then incremented by specific

units for the node and by other units for its neighbors. The main idea behind this

protocol is to combine the greedy forwarding technique and localized cost-to-progress

ratio (CPR) [52] framework proposed by Stojmenovic. In greedy forwarding, the node

that is closer to the destination than the relaying node is selected as the next hop.

CPR-routing uses an objective function that involves both distance and appropriate

load metric as a criteria to make next hop decisions. This technique tries to avoid

two main problems, namely, the dead end problem of greedy forwarding and the

probability of overloading nodes (nodes reaching their load limits). In addition to

location information, to route around areas containing nodes with high load, nodes

need to know the most recent load information of themselves and their neighbors.

For that purpose, HELLO messages are used to obtain neighbors’ load information.

CPR-Routing assumes that each edge in the network has an associated cost. The

node N holding the packet uses the objective function Fcrp which is cost of ratio

progress defined as follows:

Fcrp(A) =
Cost(NA)

|ND| − |AD|

Here, node A is one of N ’s neighbors. Cost(NA) is Load(A), the load of node A.

|ND| − |AD| is the progress which measures the oncoming of A towards D. This

function is applied on every neighbor of node N . The neighbor A with the minimum

21



www.manaraa.com

value of Fcrp is chosen as the next hop. This process is repeated at every node until

the packet reaches final destination.

2.1.5 Local Area Network Dynamic Routing Protocol: A Position Based

Routing Protocol for MANETs

The local area network dynamic routing protocol (LANDY) [76], a position based

routing protocol for MANETS by Macintosh et al., claimed to be a low overhead,

light-weight, routing protocol. LANDY works as follows:

• Locomotion Prediction of Mobile Nodes LANDY uses locomotion (movement)

and velocity of each node to predict the future location of each of these nodes so

that data packets can be forwarded efficiently towards the destination nodes. If

the forwarding process fails due to obstacles or dead ends, a perimeter routing

recovery procedure similar to that used in GPSR [8] is used to heal the problem.

A HELLO message contains the mobile node’s locomotion component (LC). The

LC contains the mobile node’s unique code identifier (MCID), its cell unique

code identifier (CCID), its three sample positions (p1,p2,p3), velocity, and three

different time stamps of the three sample positions.

• Forwarding Protocol Each node maintains a locomotion table (LT) which is

updated on receiving HELLO from its one-hop neighbors. Depending on the

LT, the source node forwards the data packet to the next hop N which will be

closer to the destination in future.

22



www.manaraa.com

• Detecting Failure and Recovery Process A data packet can be in two modes,

forwarding mode or recovery mode. The format of the data packet contains the

mode (forwarding or recovery), hop count, destination LC, LC of the node where

the packet entered recovery mode, LC of previous node, and life time. When

a node encounters local maxima, the packet enters a recovery mode. LANDY

stores that position where the packet has entered the recovery mode. Then the

packet is forwarded based on right hand rule along the first adjacent edge in

the planar graph of the network constructed. Upon receiving a packet that is

in recovery mode, each node probes to see if it is the intended destination. If

not, it tries to figure out whether it can recover from recovery mode. If yes, the

packet returns to the greedy forwarding mode. Otherwise, the packet traverses

along the edges of the planar graph in the recovery mode.

Since this protocol uses locomotion feature to predict the future position of the

mobile nodes, it can help in predicting location of the destination more accurately

and helps in more efficient packet delivery.

2.2 Hybrid Routing Protocols

In this section, we present a summary of the basic idea behind several of the recently

proposed hybrid routing protocols that depend either directly or indirectly on nodes’

position information for routing.
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2.2.1 An Anchor-Based Routing Protocol with Cell ID Management Sys-

tem for Ad Hoc Networks

Anchor-based Routing Protocol with Cell ID management system for MANETs (ARPC) [16,

77], proposed by Li and Singhal provides routing information for nodes that desire

to communicate with other nodes. The routing process is divided into the following

five main parts:

• Location-based Clustering Protocol Several physical locations (e.g., some known

buildings in a campus region) in the network area are assumed to be known.

These known locations are called anchors which have assigned coordinates. The

network area is partitioned into cells. Each cell will have an anchor that is set

as the cell’s center. It is assumed that there is always a node close to each

anchor, this node is called the agent of that anchor. The authors assume that

each node knows the coordinates and IDs of all anchors. Each anchor’s agent

periodically broadcasts a message announcing its anchor ID to the nodes of the

cells with one or two hop counts. Upon receiving the announcement, a node

joins the cell from which the announcement came and takes the anchor ID as

its cell ID. Since each node knows the IDs of all the anchors, each node can

recognize the neighboring cells. When an agent of an anchor moves away, a

node close to the anchor of the cell is selected as the new agent of the node.

• Inter-cell Routing Protocol This part lets every node maintain a dynamic rout-

ing table that contains routes to its neighboring cells. A bridge node is the first

reachable node in a cell from a neighboring cell’s node. Each entry in the rout-
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ing table represents an available path to one of the neighboring cell’s bridge

node. A source node generates RREQ messages only when no routes to the

neighboring cells are found. To find routes to the neighboring cells, a source

node broadcasts a route request message (RREQ) to its neighboring cells. Since

the node knows the cells’ IDs, it includes the IDs of the intended neighboring

cells in the RREQ message. When an intermediate node, a node within the

same cell, receives the RREQ packet, it searches its routing table for paths to

the intended neighboring cells. If it has paths, it creates a route reply message

(RREP) containing all the known bridge nodes in the neighboring cells and

unicasts the message back to the source node. If the intermediate node does

not have paths to the neighboring cells, it rebroadcasts the RREQ message.

When a node in an intended neighboring cell receives the RREQ message, it

becomes a bridge node, creates an RREP message, and unicasts it back to the

source node.

• Intra-cell Routing Protocol This protocol uses on-demand routing approach for

routing packets inside the same cell, similar to AODV [15].

• Data Packet Routing This stage explains how the data packet is transmitted

from a source to a destination node. The source node first looks up its inter-cell

routing table for the destination’s cell ID. If it does not have the destination’s

cell ID, then it checks its intra-cell routing table for a route to the destination.

If there is a route to the destination in the intra-cell routing table, it uses intra-

cell routing mechanism to deliver the data packet. Otherwise, the destination
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is in another cell. In this case, the node consults the Cell ID Management

System to get the destination’s cell ID. If the destination is in different cell, the

neighboring anchor that is closest to the destination anchor is chosen as the

next hop. Note that each node has built up its inter-cell routing table using

inter-cell routing protocol. Therefore, the source node forwards the packet to

the bridge node of the next anchor (next hop). Upon receiving the data packet,

the bridge node applies the same procedure until the destination cell is reached.

When the destination cell is reached, the bridge node delivers the packet to the

destination node using the intra-cell routing technique mentioned above.

• Cell ID Management System Nodes’ cell IDs may change due to node movement.

Therefore, the system needs a cell ID management system to handle this. Each

anchor’s agent manages the cell IDs of all the other nodes belonging to the

same cell in which the agent resides. This makes the agent store and maintain

addresses and cell IDs of the other nodes in a table called CELL-ID-TABLE.

All the agents together manage the Cell IDs; it is a distributed database system

that has the agents as its servers. When a node N needs to find its agent, it

computes the mod of the node ID of N with respect to the total number of

cells in the network. The residue of this mod represents the cell ID whose

agent is responsible for storing and maintaining the cell ID of node N. After

obtaining the cell ID through Location-Based Clustering phase and during the

network setup process, a node generates a cell ID registration message CELL-

ID-REGISTRATION. This message contains the cell ID of the agent managing
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the cell ID of that node, the address of that node, and the cell ID of that node.

The node sends the CELLID- REGISTRATION to its agent using the data

packet routing protocol mentioned previously. Upon receiving the message, the

agent inserts the node’s address and cell ID in its Cell-ID-Table. When a node

leaves its current cell and enters another cell, it needs to update its status in

its server (agent). The agent then updates cell ID of that node. It is possible

that the agent moves to another cell. In that case, the agent should send its

Cell-ID-Table to a newly designated agent which takes over the agent’s role.

2.2.2 Direction Assisted Geographic Routing for MANET

Zhou et al. [78] presented the Direction Assisted Geographic Routing (Geo-DFR)

for MANETs. Geo-DFR incorporates directional forwarding in routing (DFR) [79].

Routing is done mainly using greedy forwarding. However, in case of dead ends DFR

is used. DFR [79] was mainly designed to solve the corrupted next hop problem

resulting from outdated routes in routing tables. Geo-DFR improves the original

DFR to solve the dead end problem so that perimeter face routing is avoided. The

authors use Fisheye State Routing protocol (FSR) [80] as the hosting protocol for Geo-

DFR. FSR is a proactive routing protocol based on Distance Vector (DV) routing.

Each remote destination node broadcasts routing updates periodically using different

frequencies when it receives a route request from a source node. The destination

node’s location information as well as other necessary information are embedded

in the update packet. In addition to that, every node locally floods its topology

information for a maximum of k hops by using proactive Link State (LS) routing
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protocol. The routing updates include the piggybacked neighbor coordinates. This

provides each node with accurate routing information as well as coordinates of all

local nodes up to k hops. To reduce the local update flow, k is set to 2 in Geo-DFR.

Geo-DFR maintains the following three tables at each node.

1. Neighbor Coordinate Cache Table, which maintains coordinates of all the neigh-

bors within its local scope.

2. Direction Cache Table, which maintains the directions and positions of remote

destinations through propagating Distance Vector routing updates. This table

is refreshed periodically and its entries expire after a predefined amount of time.

The refresh time normally depends on nodes’ mobility rate.

3. Local Routing Table, which is created and maintained by the proactive local

scoped routing protocol, offering accurate local routing information to nodes

inside the local scope.

The direction of the predecessor node is calculated based on the coordinates of

both the current node and the predecessor. In addition to keeping the predecessor,

Geo-DFR traces the direction of the routing update that has arrived from the des-

tination node. In other words, Geo-DFR gets the direction to which data packets

are forwarded from routing updates, and not from destination’s coordinates. This

direction assists in deciding the next hop to forward packets. The greedy mode of

the protocol is utilized if the calculated direction (next candidate’s direction) and the

greedy direction are consistent or they differ which helps in early detection of dead

28



www.manaraa.com

ends. Otherwise, packet forwarding is done using DFR. This gives the protocol both

the geographic routing feature and the topology-based routing feature.

For forwarding a packet, the source node consults its local routing table for a

route to the destination. If there is an existing route for that destination in the table,

the packet is routed accordingly. Otherwise, the destination is outside the local

scope and is considered as a remote destination. This makes the source node invoke

(broadcast) an on-demand route discovery operation. When the destination receives

the route request, it starts to periodically broadcast beacon messages to its direct

neighbors, announcing its existence. Upon receiving a beacon message, neighbor

nodes update their routing information (i.e., the next hop ID and the direction to

the destination) and in turn, inform their neighbors of the update they received. The

proactive beaconing started by the destination ends after a predefined time within

which no data packets have been received by the destination. This may be because

the source node has already finished transferring its data. In case of dead-end or no

next-hop for the destination, the direction cache table can be consulted to forward

the data packets. When they get close to the destination node, the data packets are

forwarded using the local routing table. According to the above discovery procedure,

the source node and/or any intermediate node can consult its cache table or its local

routing table to get the destination’s coordinates and directions. Therefore, based

on this information, packets are forwarded either greedily or using the DFR mode of

routing.
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2.2.3 A New Hybrid Location-Based Ad Hoc Routing Protocol

Al-Rabayah et al. [81] present a New Hybrid Location-based Ad Hoc Routing Protocol

(HLAR) that mainly addresses scalability. HLAR is a combination of both AODV [15]

and an expected transmission count (ETX) metric based protocol [82] which reduces

the total number of packet transmissions and retransmissions. The main purpose of

this combination is to discover an optimum quality route metric called AODVETX.

This metric efficiently utilizes all possible available location information, thereby

reducing the control overhead used to establish and maintain routes. This feature

allows intermediate nodes to fix link breaks instead of merely reporting the problem

back to the sender. This protocol works as follows.

• Protocol Work-flow Initially, all the nodes exchange their location information

and IDs with their neighbors through beacon messages to build their neighbor

tables. When a source node needs to send data packets to the destination but

it does not have a route to the desired destination, it tries to find a route to the

destination in an on demand fashion. As mentioned above, this process is done

geographically by using the greedy forwarding technique. The source puts the

destination’s location information in addition to its own location information

in a route request packet RREQ. Then it tries to greedily find a neighbor from

its neighbor table that is closer to the destination node. If a closer node is

found, the source forwards the RREQ packet to that node; otherwise, there

may be a dead end (void) or neighbor nodes have no location information from

which distances to the destination can be found. In this case, the relaying node
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floods a RREQ packet to all its neighbors. Rebroadcasting packets is set to a

maximum of TTL times. The time-to-live (TTL) field is set by the source of

the request based on the estimated number of hops between the source and the

destination. Each time a node faces a dead end or a void, it decrements the

TTL value by one; when TTL reaches zero, the rebroadcasting process stops.

Upon receiving the RREQ packet, the destination node responds with a route

reply message RREP if one of the following three conditions is true.

1. It is the first time that this RREQ has been received.

2. The currently received RREQ has greater source sequence number than

the previous received RREQ.

3. The RREQ has the same source sequence number as the previously re-

ceived RREQ’s sequence number, but it shows that a better quality route

exists.

• Repairing Functionality The repairing functionality of the protocol works as

follows: when an intermediate node determines a broken link towards the desti-

nation, it stores the received data packet locally in its buffer. Then it consults

its neighbor table to see if it has a neighbor with shorter distance to the desti-

nation node; if yes, it updates its routing table and forwards the data packets

to that neighbor node. If there is no neighbor node closer to the destination

than itself, it broadcasts a route repair packet RRP to its neighbor nodes and

sets the TTL field of the RRP packet to the remaining number of hops to the

destination from its location. Similar to the route setup process mentioned
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above, a neighbor node checks its routing table to see whether it has an up-

to-date route to the intended destination; if so it replies with a route repair

reply packet RRRP to the intermediate node. If a neighbor does not have an

entry to that destination in its routing table, it tries to find one of its neighbor

nodes that is closer to the destination than itself. If it has one, it replies with a

RRRP packet to the intermediate node. Otherwise, it floods its neighbors with

a RRP packet and decrements the TTL by one. This process continues until

the destination is reached or the TTL becomes zero, in which case, the packet

is dropped. When the destination is reached, similar to the main route set up

process, the destination sends a route reply to the intermediate node so that

that intermediate node can continue forwarding the data packets without going

back to the main source node about the route break.

2.3 Discussion and Analysis of Reviewed Protocols

In this section, we discuss the merits and demerits of the geographic and hybrid

routing protocols we discussed in Sections 2.1 and 2.2, respectively. The discussed

protocols mainly differ in the way in which they handle the dead end problem. Other

issues taken into consideration in designing these protocols are: scalability, reducing

control overhead, load balancing, fault-tolerance, robustness, and reducing complex-

ity. Depending on how well the discussed protocols address these issues, we rank

the protocols low, Medium, and High with respect to these parameters as shown in

Table 2.1. Next, we present a detailed performance comparison of these protocols

with respect to these parameters.
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Table 2.1: Comparison of the Surveyed Protocols with respect to Different Features

Protocol Scalability Overhead Fault-Tolerance Robustness Complexity
HIR Low Medium - High High
LGR Medium Low High Medium High

ARPC Low Medium - Low Low
Geo-DFR Low Medium - Low High

CPR-routing High Low - High Low
HLAR Medium Low - Medium Low

LANDY Medium High Medium High High
GPSR High High - Medium High

2.3.1 Scalability

Designing scalable routing protocols for MANETS is a challenge. A protocol is scal-

able if it continues to perform well as the number of nodes in the network increases.

HIR [2], does not scale well due to the central packet flooding technique used by

a designated node to select LANDMARKs. The packets will be received by every

node in the network and each node participates in making the LANDMARK election

decision. This process limits scalability. However, after selecting the LANDMARKs,

data packet forwarding will be faster since sender nodes use the LANDMARKs that

have been established previously. So, HIR is moderately scalable. In LGR [6], there

is one flooding technique. A cluster head (CH) broadcasts messages to all the nodes

in its own cluster as well as all nodes in its neighboring clusters so that each of these

nodes can establish a route to the CH. This approach does not scale well as the num-

ber of nodes in the network increases. This is because if nodes are highly mobile,

frequent CH election occurs which results in high message overhead. LGR is more

scalable than HIR since LGR does not broadcast control packets or data packets to

the entire network.
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ARPC[16] is less scalable since nodes use routing tables which can become large

as the network size increases. Moreover, the announcement packets sent by agent

nodes to announce their existence to the nodes in the cell they reside in can cause

large overhead as the network grows. When no route is found in the nodes’ routing

tables, there is a possibility of two level broadcasting of messages, namely, Inter-cell

broadcasting, which occurs across all cells in the network and, Intra-cell broadcasting

which happens inside a cell. The second one has lower effect on scalability than the

first one. In both Inter-cell broadcasting and Intra-cell broadcasting, rebroadcasting

may occur until the intended node is reached. So, ARPC is less scalable than LGR.

Scalability in Geo-DFR [78] is affected by different factors. First, maintaining three

tables in each node increases overhead especially when a node has many neighbors.

But this limitation is local, since the number of the records in two of these tables

depends on the density of the neighboring nodes. The other table (Direction Cache

Table) holds destinations’ directions and coordinates. However, records expire after

a predefined time which helps in reducing the table size. When information found

in the tables are out of date, the protocol depends on two flooding operations which

affects the scalability of the algorithm. These factors make this protocol to be worse

than the protocols discussed so far.

Since CPR-Routing [75] protocol uses only local broadcasting, its scalability is

limited only to a local scope which means that unless there are a large number of

local (neighboring) nodes, the protocol scales well. We can note that CPR-Routing

is the most scalable protocol among all the above mentioned protocols since the

information exchanged between nodes to route data packets is much less than the
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other protocols. HLAR [81] is another protocol that is scalable which using periodic

broadcast messages, keeps routing information in tables so that less routing requests

are broadcast when source nodes need to send packets. In spite of that, source

nodes may need to broadcast route request packets when there are no routes to

the destination in their Neighbor Tables. In that case, the broadcasting process is

limited to a pre-determined number of hops (TTL) set by the source node. Even

though this protocol is proposed to address scalability issue, it still utilizes large

number of message exchanges to set up routes. However, CPR-Routing exchanges

less messages and it provides higher scalability than this protocol. LANDY [76] is

a scalable protocol since it has only local broadcasting to build a Locomotion Table

(LT). Sending data packets only depends on LT and there is no global broadcasting

in case of failure or dead ends. Instead of broadcasting, when forwarding fails, a

recovery mode is invoked from the point of failure; hence allowing the protocol scale

better.

The above scalability analysis of the discussed protocols gets us to conclude the

following. Broadcasting for route requests and route maintenance is one of the main

operations that can determine scalability. We notice that each one of the discussed

protocols uses broadcasting technique, but in different ways. Each one of them uses

local broadcasting to connect the nodes that are within the transmission range of each

other. This broadcasting can limit scalability but only in local scope. Since all the

protocols use this technique, they will share the same characteristics and will have the

same limitation with respect to scalability. Because of that, we try to consider global

broadcasting as well as other factors that can affect scalability. These factors may be
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the amount of messages exchanged to setup routes, size of packets, and/or routing

tables. Most of the above mentioned protocols utilize global broadcasting, each in

different way. Considering all of these factors we can sort the protocols with respect

to scalability, from the most scalable to least scalable as follows: CPR-ROUTING,

GPSR, LANDY, LGR, HLAR, HIR, ARPC, and GEO-DFR.

2.3.2 Control Overhead, Complexity, Latency, and Robustness

Other factors that need to be taken into consideration while designing routing pro-

tocols for MANETs are Control Overhead, Complexity, Latency, and Robustness.

Control overhead measures the amount of control information that are exchanged

between nodes before starting and/or during the data packet forwarding process.

Overhead on nodes also includes the amount (size) of information that nodes can use

to build routing tables. More control overhead generally results in more successful

packet delivery, but may not be scalable. Robustness, on the other hand, measures

the degree of successful data packet delivery. Highly robust protocols guarantee that

packets are delivered to their destinations if there is a route from source node to des-

tination. Complexity shows the amount of calculations required by the protocol to

build routing tables, make routing decisions, and/or forward data packets. Latency

measures the speed at which packets are delivered. Faster the packets arrive at their

destinations, lower the latency is.

In HIR [2], nodes proportionally exchange high amount of control information

to select LANDMARKs. However, since this happens only to select LANDMARKs,

normal data packet forwarding process does not incur additional overhead. On the
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other hand, the level of stability of LANDMARK nodes plays an important role in the

overhead in constructing LANDMARKs. More stable LANDMARKs results in less

control overhead. So, overhead in this protocol mainly depends on the rate at which

nodes move and the network size. On the other hand, up-to-date maintenance of

LANDMARK nodes helps nodes forward packets correctly. In addition to that, using

Expanding Ring Flooding when both, the Greedy mode and the Detour mode fail

makes it more robust. Beside that, the switching technique from Greedy to Detour

mode and from Detour to Greedy mode makes the protocol loop free which gives

better robustness.

LGR [6] deals with dead end problems using cluster-based techniques. Electing

Cluster Heads (CH) overwhelms nodes with control packets exchanged between nodes.

Choosing new CHs when a CH leaves its cluster means that nodes must compare

their distances again to elect one of them as a CH, for their cluster. The new CH

then announces its existence to the other related nodes within its cluster and its

neighboring clusters. This results in longer end-to-end delay and increased overhead.

These calculations incur reasonable complexity which is lower than the complexity

produced by HIR. However, LGR can make use of these information and produce

better robustness. In addition to that, using Right Hand Rule to overcome the dead

end problem faced by the Greedy mode can give more robust data packet forwarding.

We notice that the overhead in this protocol is similar to or less than that of HIR,

but HIR is more robust than LGR since HIR has more concrete alternative solutions

to voids at the cost of more complexity than the complexity of LGR.

In ARPC[16], overhead is high on nodes since each node maintains two routing
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tables, namely inter-cell routing table and intra-cell routing table. This is obviously

useful for better data packet forwarding since routing information are mostly available

in the tables giving better performance, lower complexity, and lower end-to-end delay.

On the other hand, considering the available information and anchors, the protocol

simply uses Greedy forwarding that may fail in case of dead ends or voids. However,

the protocol does not use any recovery mechanism to cope with this problem; hence

ARPC is not robust.

Maintaining three tables for each node in Geo-DFR [78] results in high overhead.

Finding and updating the records of the Direction Cache Table as well as the other two

local tables results in more complexity. The protocol ensures better performance and

lower end-to-end delay since packets are forwarded mainly in Greedy mode. CPR-

Routing [75] uses reasonable information to make routing decisions which reduces

overhead in routing using an objective function for selecting forwarding node. This

means that data packets are forwarded directly without building routes or maintaining

routing tables in nodes. A drawback of this approach is the complexity involved in

the calculation for selecting appropriate neighbor to forward a packet which could

result in higher end-to-end delay. The end-to-end-delay could also increase when

the protocol selects route that has lower cost. Using this technique, the protocol

has potential to avoid the dead end problem since packets are routed choosing the

best route determined based on the objective function rather than purely Greedy

forwarding, producing robust routing. HLAR [81] uses only neighbor tables in nodes

which depends on the network size. Since intermediate nodes participate in repairing

broken routes, latency will be lower, and has lower complexity. Robustness can be
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affected due to intermediate nodes buffering data packets until a broken route is

repaired because packets could be lost due to buffer overflow.

Overhead involved in LANDY [76] is higher than that of the protocols discussed so

far since it uses more control information to build tables at each node. That includes

different samples of each node’s location information, exchanged periodically between

nodes, building planar graphs to be used as alternatives to the normal forwarding

mode. On the other hand, the protocol can greatly make use of this information

to successfully deliver data packets to destinations which makes the protocol more

robust with lower end-to-end delay. That is because routing decision of packets are

taken locally when dead ends are faced which takes less time. This makes the protocol

more robust than the previously discussed protocols but at the cost of more overhead

and complexity than the other protocols.

2.3.3 Load Balancing and Fault-Tolerance

Next, we compare the Load Balancing and the Fault-Tolerance aspects of the sur-

veyed protocols. Load Balancing refers to spreading the data packets that need to

be sent over multiple routes without overwhelming a node or a group of nodes and

leaving the others unused. This feature makes packets travel faster throughout the

network. Fault-Tolerance relates to how efficiently a protocol deals with incorrect lo-

cation information of the destination nodes for successful delivery of the packets. The

discussed protocols do not provide specific strategies to deal with the load balanc-

ing. However, some of them (e.g., CPR-Routing [75]) implicitly provide a moderate

level of load balancing. CPR-Routing tries to balance load by using nodes’ load and

39



www.manaraa.com

choosing the next hop that satisfies a load condition. This means that each time a

packet is forwarded, different nodes are selected as next hop based on a predefined

metric which gives the chance of spreading out the packets over more nodes producing

medium level of load balancing.

Fault-Tolerance is achieved by the surveyed protocols, namely LGR [6] and LANDY [76].

The other protocols assume that location information are correctly provided. How-

ever, LGR simply routes data packets using fixed cluster positions instead of accu-

rate nodes’ positions, so inaccurate location information does not affect the process.

LANDY uses three position samples of each node. This helps having better estimate

of nodes’ locations especially when the velocity of the sampled nodes are known.

However, we can see that LGR tolerates faults better when compared to LANDY.

This is because LGR does not use nodes’ locations to route packets while LANDY

does that, but reduces the chance of having inaccurate location information.

2.4 On-demand Routing Protocols

In this section, we review related on-demand routing protocols bringing out their

merits and demerits.

2.4.1 Ad Hoc On-demand Distance Vector Routing (AODV)

Under AODV [15], when a node needs to establish a route to a destination, it broad-

casts a route request to all its neighbor nodes. A node receiving the route request

replies to the source node, if it has a route to the destination; otherwise it rebroad-

casts the route request to all its neighbors. This process continues until the a route to
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the destination is found. This protocol is robust because broadcasting a route request

guarantees finding a route to the destination if there is one; however, as number of

nodes increases, the number of redundant rebroadcasting of route requests increases.

This means this protocol is not scalable.

2.4.2 Dynamic Source Routing (DSR)

DSR [33] is an on-demand routing protocol in which a source S initiates a route

discovery to find a route to the target T . In the route discovery phase, the source

broadcasts a route request to all its neighbors. A route request contains a source

identifier, a target identifier, a request identifier, and a path (i.e., a route). On

receiving the route request for the first time, each intermediate node N appends

its identifier to the node list in the request (i.e., to the path) and rebroadcasts the

request. When the route request arrives at the target T , this target creates a route

reply which contains the path received in the request (i.e., the accumulated list of

nodes). The target then forwards the reply through the accumulated list of nodes in

the reverse order. When the source S receives the reply, it creates a new record in its

Route Cache that contains the route returned in the reply.

Whenever a node transmits a data packet, a route reply packet , or a ROUTE

ERROR packet, it must verify that the next hop correctly receives that packet. Be-

cause DSR is a source routing protocol, when an originator sends a data packet, it

inserts the complete route into the header of that data packet. Each intermediate

node N along with the route forwards the data packet to a next hop H indicated

in the header of the data packet. N then verifies that H has received the packet.
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However, if the intermediate node N cannot make the confirmation within a limited

number of local retransmissions of the data packet, N returns a ROUTE ERROR

packet to the source of that data packet. This ROUTE ERROR packet indicates that

the link from N to the next hop H is broken. The source then deletes the broken

link from its Route Cache and tries another route if one cached or restarts the route

discovery. The redundancy of the route requests and the accumulated nodes in these

requests make this protocol non-scalable and result in high overhead.

We propose an on-demand protocol, that lets the route requests propagate using a

greedy approach until the destination is reached. This helps in reducing the overhead

and route requests are not broadcast under our protocol. In addition to that, the

route requests traverse the shortest path possible because they are propagated using

a greedy approach.

2.5 Secure Routing Protocols

In this section, we review some of the source routing protocols, presented in the

literature which were claimed to be secure.

2.5.1 Secure Routing for MANETs (SRP)

SRP [46] is an on-demand source routing protocol that has the basic characteristics of

reactive routing protocols. Route requests in this protocol are generated by a source S

and protected by Message Authentication Code (MAC) [83]. The MAC is computed

using the key that S shares with the target T . S broadcasts the route request to

all its neighbors. When each neighbor of S (or an intermediate node) receives the
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route request, it appends its id to the request and rebroadcasts the updated request

if it has not seen that request ever. Otherwise, it discards the request. Intermediate

nodes do not check the validity of the MAC in the request because no node possesses

the key used to compute it except S and T .

When the target T receives the request, it verifies the MAC in the request. If the

MAC is valid, then the target assumes that all the adjacent pairs of nodes accumulated

in the route request are neighbors. This route is considered a valid or a plausible

route. The target then computes a MAC that authenticates the route using the key

it shares with the source. This is then sent back to the source S through the reverse

route traversed by the request. For example, a route request message received by an

intermediate node Xj has the following form

mrreq = (rreq, S, T, id, sn, (X1, ..., Xj),macS),

where id is a route id that is randomly generated, sn is a sequence number, and macS

is the MAC computed on rreq, S, T, id, and sn by S using the key it shares with

T . Now, if S, X1, ..., Xp, T is the discovered route, then all intermediate nodes Xj,

1 ≤ j ≤ p will receive mrrep as a route reply, where

mrrep = (rrep, S, T, id, sn,(X1,...,Xp),macT ),

where macT is the MAC computed on the message fields preceding it by the target T

with the key it shares with S. Intermediate nodes must check the route reply header to

verify that both id and sn fields are correct. In addition to that, intermediate nodes

need to check that they are neighbors with both their upstream and downstream

nodes before sending the route reply upstream.

An intrinsic point to observe in this protocol is that the upstream route from T
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to S is authenticated by the target, but the downstream route from S to T is not

authenticated by S. This means that there could be malicious pair of nodes that

are not neighbors but claim to be neighbors in the route request that reaches the

target. These malicious nodes might divert traffic through other routes as observed

in [46]. It is also possible for a malicious node to pad route requests with identifiers

that are not its neighbors. The malicious node can impersonate these nodes in the

reply phase in such a way that the reply propagates to the source node. Hence, the

route received by the source may be invalid because some of the nodes specified in

the route as neighbors may not be neighbors.

2.5.2 The Basic Ariadne Protocol

Hu et al. [21] presented Ariadne , a secure source routing protocol, based on Dynamic

Source Routing protocol (DSR) [33]. When a source S performs a route discovery for

a target T , it is assumed that both S and T share the secret key KSD and KDS for

authenticating messages. Ariadne imposes two requirements in the route discovery

phase:

• First, that a source node can authenticate each node in the route (i.e., the node

list in the route reply).

• Second, that the target can authenticate each node in the route traversed by the

route request so that it returns a route reply along a path that has legitimate

nodes.
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To achieve node list authentication, the authors use three different techniques:

the TESLA protocol, the standard MACs, and the digital signatures. TESLA [84] is

a broadcast authentication scheme that requires time synchronization. Unlike other

asymmetric protocols such as RSA [85], TESLA achieves the asymmetry from both

clock synchronization and delayed key disclosure. However, TESLA depends on the

ability of a receiver to correctly determine which keys a sender might have

published (i.e., the TESLA security condition).

In the following subsections, we discuss the three techniques used in Ariadne

mentioned above and present the attack found on each one of them.

2.5.3 Basic Idea behind Ariadne with Signature

Ariadne with signatures proposed by Hu et al. [21] differs from SRP in two main

aspects as noted in [4]. First, in addition to source and target nodes, intermediate

nodes include their own digital signatures in route requests. Second, per-hop hashing

is used to prevent removal of legitimate nodes from node lists in route requests. A

source node broadcasts a route request message to its neighbors. The route request

contains the source id and the target id, a random request id, and a MAC computed

over these elements using a key that the source shares with the target. Together with

its own id, each intermediate node hashes the MAC using a one-way hash function.

These hash values computed by intermediate nodes are called per-hop hash values.

The intermediate node then appends its id to the node list accumulated in the request

and generates a digital signature over this updated request. This signature is then

appended to the signature list in the request and the request is re-broadcast. For
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example, as noted in [4], a route request message forwarded by an intermediate node

Xj has the following form

mrreq = (rreq, S, T, id, hXj
, (X1, ..., Xj), (sigX1 , ..., sigXj

)),

where S and T are the source and target identifiers respectively, id is the random

request identifier, hXj
is the per-hop hash value calculated by Xj, (X1, ..., Xj) is the

node list, and (sigX1 , ..., sigXj
) is the signature list. When the route request arrives at

the target T , T verifies the MAC of the source, the per-hop hash of each intermediate

node, and individual signature of each intermediate node in the signature list. If

these verifications are successful, the target generates a route reply and sends it back

through the list of nodes in the request in the reverse order. Each intermediate

node forwards the reply to the next hop without any modification of the reply. The

reply contains the source id and the target id, the accumulated route and the digital

signatures of the intermediate nodes obtained from the route request, and a digital

signature that the target computed over these elements.

When the source S receives the reply, it verifies the digital signature of the target

and the individual signature of each intermediate node. S accepts the route returned

in the route reply if all these verifications are successful.

2.5.4 Basic Idea Behind Ariadne with MAC

Ariadne with MAC presented by Hu et al. [21] is similar to the one presented in

Section 2.5.3 with the exception that it does not use digital signatures. In the route

discovery phase, a source S broadcasts a route request message intended to find a

route to a target T . The request message contains the ids of both the source and the
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target, a random request id, and the MAC that is computed over these elements. The

MAC is computed by S using a key (KST ) it shares with T . When an intermediate

node X receives this MAC, X hashes the MAC with its own id using a one-way hash

function. These hash values are called per-hop hash values which prevent the removal

of node ids from the node list in the route request.

When an intermediate node receives the request for the first time, it computes

the per-hop hash value, appends its id to the accumulated node list contained in the

request, and computes its own MAC on the updated request using the key it shares

with T . The intermediate node then appends its MAC to the MAC list in the route

request and re-broadcasts the updated request. For example, as observed in [3], a

route request message mrreq received by an intermediate node Xj has the following

form

mrreq = (rreq, S, T, id, hXj
, (X1, ..., Xj), (macX1 , ...,macXj

)),

where S and T are the source and target identifiers respectively, id is the random re-

quest id, hXj
is the per-hop hash value (i.e., hash chain) calculated by Xj, (X1, ..., Xj)

is the node list, and (macX1 , ...,macXj
) is the MAC list, where

hXj
= H(Xj, H(Xj−1, H(..., H(X1, hS)))),

hS is the hash value computed by S over the main fields of the route request. i.e.,

hS = MACKST
(S, T, id).

When the target receives the route request, it verifies the hash value and MAC at-

tached by the source and verifies the hash value and MAC attached by each inter-

mediate node. If these verifications are successful, the target generates a route reply

and unicasts it back via the reverse route obtained from the route request. The route
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reply contains the id of the source and target, the node list obtained from the request,

and a MAC computed by the target over these elements. The MAC attached by the

target is computed using the key shared by the target and the source. Intermediate

nodes do not modify the reply. Route reply mrrep created by the target T is of the

following form

mrrep = (rrep, S, T, (X1, ..., Xj),macT ).

When the source S receives the route reply mrrep, it only verifies the target’s MAC

macT . S accepts the route returned in the reply if this verification is successful.

Otherwise it discards the reply.

2.5.5 Basic Idea Behind the Optimized Version of Ariadne with Iterated

MAC

Ariadne has another version that uses iterated MAC computations [86] instead of

independent MACs that are computed separately,as in Section 2.5.4. As noted in [3],

compared to the other versions of Ariadne, this iterated MAC version has superior

security characteristics and is more secure. Like the other versions, a source node

broadcasts a route request to all its neighbors. Each intermediate node updates the

request that is received for the first time and re-broadcasts the updated request. A

route request that reaches an intermediate node Xj, 1 ≤ j ≤ p, on a route S =

X0,X1,...,Xp,Xp+1 = T is of the following form

mj = (rreq, S, T, id, (X1, ..., Xj),macSX1 ...Xj
).

Where id is a randomly generated request id, (X1, ..., Xj) is the accumulated route

(i.e., the node list), macSX1 ...Xj
is the MAC computed by Xj with the key it shares
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with the target T over the route request mj−1 received from Xj−1, where

mj−1 = (rreq, S, T, id, (X1, ..., Xj−1),macSX1 ...Xj−1
).

When the target T receives the route request from the last intermediate node Xp, it

recomputes all intermediate MAC values. T shares a key with each intermediate node,

therefore, it iteratively reconstructs the MAC sequence and compares each value with

the corresponding value it computed up to the last value that should match the MAC

received from Xp. If the verification is successful, it means that each intermediate

node in the node is genuine. The target T then generates a route reply of the form

mrrep = (rrep, S, T, id, (X1, ..., Xp),macT ),

where macT is the MAC computed by T with the key it shares with S on the

message fields that precede it (i.e., on (rrep, S, T, id,X1, ..., Xp)). The reply mrrep

then is unicast via the nodes in the request in the reverse order (i.e., via the nodes

Xp, Xp−1, ..., X1) to the source S. When and intermediate node receives the reply, it

verifies that its id is in the node list. It also verifies that the id preceding it and the

id next to it in the node list are its neighbors. However, intermediate nodes do not

modify the reply. When the source receives the route reply mrrep, it accepts the route

returned in mrrep if it can successfully verify the MAC computed by the target, i.e.,

macT .

2.5.6 Basic Idea Behind endairA Protocol

Àcs et al. presented endairA [3], a secure source routing protocol, in which the route

reply is authenticated; hence intermediate nodes sign the route reply instead of the

route request. A source S broadcasts a route request that contains the identifiers of
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Figure 2.2: An Illustration of the Operation of endairA. S is the source, T is the
target, and X and Y are the intermediate nodes. id is a request id that is randomly
generated. sigX , sigY , and sigT are digital signatures of X, Y , and T , respectively.
Each signature is computed over the message fields preceding it (including the previ-
ous signatures) [3].

both the source and the target and a request id. Intermediate nodes that receive the

request for the first time append their id to the node list and rebroadcast the request.

A typical route request mj that is broadcast by a node Xj, 0 ≤ j ≤ i, on a route

S = X0, X1, ..., Xi, Xi+1 = T , is of the form

mj = (rreq, S, T, id, (X1, ..., Xj)).

When the target receives the route request, it creates a route reply that contains the

ids of the source and the target, the node list found in the request, and a digital

signature computed by the target over the elements preceding the signature. The

reply is unicast upstream through the nodes in the request in the reverse order. When

and intermediate node receives the reply, it performs the following verifications:

1. its id is in the accumulated route contained in the reply.

2. the id preceding it and the id next to it in the node list are its neighbors.

3. the signatures in the route reply are valid.
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If these verifications succeed, the intermediate node signs the reply and forwards

it to the next node in the node list towards the source. As presented in [3], a route

reply unicast by Xj, 0 ≤ j ≤ i, is of the form

mj = (rrep, S, T, id, (X1, ..., Xi), (sigT , ..., sigXj
)),

where sigXj
is the digital signature of Xj on the message fields preceding it.

When the source S receives the route reply, it checks if X1 (i.e., the first id in

the node list) is one of its neighbors. Then it verifies each individual signature in

the reply. S accepts the route returned in the reply if all these verifications succeed.

Figure 2.2 illustrates the operation of endairA.

Copyright c© Baban Ahmed Mahmood, 2016.
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Chapter 3 Greedy Routing Protocol with Backtracking for Mobile

Ad-Hoc Networks

3.1 Introduction

As mentioned earlier, routing protocols designed for MANETs can be broadly classi-

fied as geographic routing protocols (or position-based routing protocols) and topology-

based routing protocols. In geographic routing protocols, nodes do not maintain

information related to network topology (i.e., they are topology independent). Gen-

erally [6], nodes need their own location, their neighbors’ location, and the location

of the destination node to which the packet needs to be forwarded. Using this lo-

cation information, routing is accomplished by forwarding packets hop-by-hop until

the destination node is reached [7]. Greedy forwarding (GPSR [8]), is one of the

main strategies used in geographic routing protocols. Under Greedy forwarding, an

intermediate node on the route forwards packets to the next neighbor node that is

closer to the destination than itself. Different geographic routing protocols use differ-

ent greedy forwarding strategies which can be defined in terms of distance, progress,

and/or direction towards destination nodes.

Unlike on-demand routing protocols, geographic routing protocols do not depend

on flooding route request messages to discover routes. This feature helps geographic

routing protocols to reduce the extra overhead incurred for route discovery [2, 7] . A

node only needs to know the position of its neighbors and the position of the destina-
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tion to forward packets. Therefore, geographic routing protocols generally are more

scalable than topology based routing protocols [18, 87, 17]. In spite of the benefits

mentioned above, geographic routing protocols have the following limitations: Greedy

forwarding, the primary packet forwarding strategy used by geographic routing pro-

tocols, may fail in low density networks, networks with non-uniformly distributed

nodes, and/or networks where obstacles can be present.

3.1.1 Objective

From the geographic routing protocols we discussed above, we observe that the more

robust the protocol, the less scalable it is. Furthermore, many of the existing geo-

graphic routing protocols either use more control information (to make it more Ro-

bust) which may result in redundant messages, contention, and collision, or use less

control information (to make it more scalable) which may lead to less packet delivery

ratio. In this chapter, we address this issue and propose Greedy Routing Protocol

with Backtracking (GRB), a novel and simple position-based routing protocol which

allows each node to forward data packets to its best neighbor (method used for

best neighbor selection is explained in Section 3.2.1) possible until the destination is

reached. Unlike GPSR, GRB uses less computation to determine the next hop on the

route and it performs as well as or better than GPSR, AODV, and DSR.

The rest of the chapter is organized as follows. In Section 3.2, we present our pro-

tocol. In Section 3.3, we present the performance evaluation results of our protocol.
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3.2 Our Greedy Routing Protocol with Backtracking (GRB)

In this section, we present the basic idea behind our protocol, and then present

detailed description of the protocol.

3.2.1 Basic Idea Behind GRB

GRB routes data packets either in forwarding mode (greedy mode or simple for-

warding) or in backtracking mode. When a sender/intermediate node S wants to

send/forward a packet to a destination D, it picks the best neighbor N1 and sends

the packet to N1. The best neighbor N1 is the neighbor that is closest to the des-

tination than any other neighbor; note that this neighbor may not be closer to the

destination than S itself because S may be facing a void. If the packet backtracks

from this node to S, it picks the one that is closest to the destination among the

remaining neighbors, and this process continues until all neighbors have been tried;

if it cannot forward the packet through any of its neighbors, it sends the packet back

to the node from which it received the packet. Every node on the path uses the same

strategy to forward packets. Note that if the node picked is closer to the destination

than S, then the forwarding is implicitly greedy; otherwise, the node tries to forward

packets around a void. In this protocol, a source node drops data packets if it has no

neighbors or it tried all the neighbors to forward the packet and failed.

Formal description of the protocol for data forwarding and finding the next best

hop is given in Figures 3.1 and 3.2.
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Figure 3.1: GRB Data Forwarding (Sending/Receiving Data Packets).

3.2.2 Assumptions

We assume that all nodes have the same transmission range (i.e., all links are bidi-

rectional). We also assume that each node is equipped with a GPS and each node

can get the location of the destination node through an available Location Service.

In the following subsections we describe our protocol in detail.

3.2.3 Data Structures Used in the Protocol

Each node maintains the following two tables.

Neighbor Table. Each node sends a HELLO packet to all its neighbors in each
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Figure 3.2: GRB Data Forwarding (Functions).

time interval T . This HELLO packet includes the node’s id as well as its posi-

tion. To minimize collision of HELLO packets due to concurrent transmissions,

we jitter each HELLO packet transmission interval by R milliseconds between

two successive transmissions of HELLO packets so that each node transmits

HELLO packets at a random time chosen in the interval [T −R, T +R]. When

a node receives a HELLO packet, it creates in its Neighbor Table an entry

containing neighbor identifier (NbrID), neighbor position, and lifetime if that
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neighbor is not in the table; if there is an entry corresponding to that neighbor

in the table, the lifetime is updated. If a node does not receive HELLO packets

for a time longer than 2T from a neighbor node, it assumes the neighbor has

moved and removes the associated entry from the table.

Seen Table. This table helps picking best neighbor for forwarding packets to the

destination. For that purpose, when a node receives a data packet, it stores the

information about the packet in its Seen Table. As shown in Table 3.1, each

record of this table contains five fields namely, neighbor ID (NbrID), source

address (Src), destination address (Dst), flag (Flag), and lifetime (Lifetime).

NbrID is the address of the neighboring node that has sent the packet, for-

warded the packet, or the node from which the packet has backtracked. Src

contains the address of the source node that generated the data packet. Flag

indicates whether the received packet is a new packet (i.e., forwarding mode)

or it has backtracked from a neighboring node (i.e., backtracking mode). The

flag is set to FALSE when the packet is in forwarding mode and set to TRUE

when it has backtracked. The lifetime field specifies the lifetime of the associ-

ated record in the Seen Table. When a node receives a data packet, it creates

an entry in its Seen Table if the packet is new. However, if it has received

a data packet with the same source and destination addresses from the same

neighboring node, then it updates the lifetime of the associated record. On the

other hand, when the lifetime expires, the associated record with that lifetime

is removed from the table.
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3.2.4 Sending and Forwarding Packets

Each node can send, forward, and/or receive data packets. When a node has data

packets to send and the destination node is not one of its neighbors, it picks the

best neighbor as described in Section 3.2.1 and forwards the packet to that neighbor.

Since our protocol does not enforce the next-hop N to be closer to the destination

than the sender S, N is either closer to D than S (i.e., Greedy mode), or farther to

D than S. However, the next-hop N must be closer to D than any other neighbor

that has not seen a packet to the same source-destination pair according to their Seen

Table. Before forwarding the packet to N , the source or intermediate node S does

the following:

S looks up its Seen Table for N . If S finds a record for N in the Seen Table

that has the same source and destination addresses as that in the packet, then

it considers N as invalid next hop for that packet and picks another neighboring

node as the next hop. This means that S has received this packet from N which

is either a new packet (i.e., flag is FALSE) or a backtracked packet (i.e., flag

is TURE). It cannot forward the packet to that node because that results in a

loop. For example, in Figure 3.3, when node N3 receives a data packet from

node N1, it creates an entry in its Seen Table as shown in Table 3.1. This

entry tells N3 that N1 is invalid next hop because it has received the packet

from N1 and as a result, the Seen Table prevents loop between N3 and N1.

However, the Seen Table of N1 does not have N3 in the table so it can forward

the data packet to N3 after checking with N3 if it is a valid next hop. How
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Figure 3.3: Data forwarding Example.

this verification is done is explained next.

Table 3.1: Seen Table at Node N3 in Figure 3.3

NbrID Src Dst Flag Lifetime
N1 S D False T

How S verifies with N if it is a valid next hop. If N is not in the Seen Table

of S, then S sends N a verification packet, with same source-destination pair

in the header as in the data packet’s header, asking N to check whether it has

seen data packets from the same source-destination pair from any of its other

neighbors. When N receives the verification packet, it checks its Seen Table

for an entry that has the same source and destination addresses as that in the

verification packet, with a Flag set to False, but with NbrID different from the

ID of S. If such an entry is found, it means that N has seen a packet for the

same source-destination pair and it sends a reply back to S indicating that it

is invalid next hop. However, if such entry is found but Flag set to True, it

means a neighbor N1 of node N has sent back the data packet to N after N1
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failed to forward the packet. In this case, maybe there are neighbors of N other

than N1 that have not been chosen by N1 to forward a packet yet, therefore

N is not considered as invalid next hop and as a result, N sends a reply back

to S indicating that it is a valid next hop for that data packet. After receiving

the reply from N , if S finds N is a valid next hop, it forwards the packet to

N . Otherwise, it picks another neighbor as a new candidate for next hop and

checks if it is a valid next hop and so on. For example, in Figure 3.3, when N1

decides to forward a data packet to N3, it sends a verification packet to N3.

N3 checks its Seen Table for an entry with NbrID set to any ID other than

N1, same Src and Dst values as those in the verification packet, and Flag set

to False. However, N3 does not have such entry in its Seen Table (refer to

Table 3.1); hence N3 sends a positive reply to N1, and N1 forwards the packet

to N3. If a node finds all its neighbors are invalid next hops, then the packet

is sent back to the node from which it was received.

When a packet backtracks. A packet backtracks from the current node to its

sender in the following two cases:

1. All the neighbors of the current node have seen that packet. This means

none of the neighbors could forward the packet.

2. The current node has no neighbors other than the sender. For example, in

Figure 3.3, N2 has no neighbors other than N1 which sent the packet to it.

Therefore, the packet backtracks to N1 and N1 inserts a new entry to its

Seen Table as shown in Table 3.2. The Flag of the new entry (i.e., second
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row) is set to True which means that from the perspective of N1, N2 is

considered invalid next hop for that packet. Therefore, when N1 tries to

pick next hop for the same destination next time, it will not pick N2 as

long as the Lifetime of the associated entry (i.e., second row in Table 3.2)

in the Seen Table of N1 has not expired.

Table 3.2: Seen Table at Node N1 in Figure 3.3

NbrID Src Dst Flag Lifetime
S S D False T1

N2 S D True T2

When a packet is dropped. A packet is dropped by a node when all the neighbors

have been identified as invalid next hops or the node has no neighbors.

3.3 Performance Analysis

In this section, we present the performance evaluation results of GRB compared to

AODV [15], DSR [33], and GPSR [8]. We first describe the simulation environment

and then discuss the simulation results. We simulated GRB, AODV, and DSR on a

variety of network topologies. Then we compared the performace of GRB with the

results provided in GPSR [8].

3.3.1 Simulation Environment

We used GloMoSim [88], a network-simulation tool for studying the performance of

routing protocols for MANETs, for evaluating the performance of GRB. We chose

IEEE 802.11 and IP as the MAC and network layer protocols, respectively. All nodes
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have a fixed transmission range of 250 m. We used the implementation of AODV and

DSR that comes with the GloMoSim 2.0.3 package to compare their performance with

GRB. We ran several simulations on two different sets of traffic flows. The simulations

run in different terrain areas are given in Table 3.3; each simulation lasted for 900

seconds of simulated time. The nodes were distributed uniformly at random in the

terrain area. We used the following four metrics to evaluate performance:

1. Packet Delivery Ratio: Measures the success rate of delivered data packets.

2. End-To-End Delay: Average time a packet takes to reach the destination node.

3. Hop Count: The average number of hops a packet traverses to reach the desti-

nation.

4. Node Density: Number of nodes in the area.

5. Network Diameter: For studying the effect of different network areas on the

performance of the protocol.

In this experiment, we varied the number of nodes simulated from 50 to 300. Two

sets of random traffic flows have been used in the simulation. The first set consisted

of 30 CBR (Constant Bit Rate) flows in which 30 different senders generate data

packets to be sent to 30 random destinations. Each CBR flow sends packets at speed

of 16Kbps and uses 512-byte packets. Depending on the start time and end time of

each sender in each flow, different number of packets are sent by different CBR flows.

However, in each flow, each sender sends a packet every 0.25 second. Node mobility

is set using random Way-point [33] model. Under this model, each node travels from
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a location to a random destination at a random speed, the speed being uniformly

distributed in a predefined range. After a node reaches its destination, it pauses for

a predetermined amount of time and then moves to a new destination at a different

randomly chosen speed. In our simulation, the speed randomly chosen lies between

0 and 20 meters/second. In order to study how mobility affects the performance of

the routing protocols, we selected pause times of 0, 20, 30, 40, 60, 80, 100, and 120

seconds. When the pause time is 0 seconds, every node moves continuously. As the

pause time increases, the network approaches the characteristics of a fixed network.

The second set consists of 20 CBR flows which has 20 sender nodes generating packets

at a speed and size same as that in the first set.

Table 3.3: Topology used for Simulation

Nodes Network Area CBR Flows Packets Sent
{50,75,100,125,150} 1500m X 1500m 30 8780
{175,200,225,250,300} 1500m X 1500m 30 8780

50 1500m X 300m 30 8780
112 2250m X 450m 30 8780
200 3000m X 600m 30 8780

3.3.2 Packet Delivery Ratio

The overall average packet delivery ratio for DSR, AODV, and GRB are 55.52%,

97.38% and 98.60%, respectively. We selected CBR flows randomly; hence it is not

known whether there is a valid path between the source node and the destination node

in each flow. Higher number of packets (refer to Table 3.3) imposes higher demand on

routing protocols as higher traffic is generated between source and destination pairs.

GRB finds next hops based on the most up to date location information of the nodes
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involved in the forwarding process. It simply picks next hops based on Seen Tables to

forward data packets which results in few control packets. This makes GRB adapt to

location changes; hence it tolerates mobility better than AODV and DSR. Therefore,

GRB delivers higher number of data packets than DSR and AODV for different pause

times as shown in Figures 3.4, 3.5, 3.6, and 3.7.

Figure 3.4: Packet Delivery Ratio
(50 Nodes, 30-CBR Flows, network
area (1500m x 300m)), GRB compared
with AODV.

Figure 3.5: Packet Delivery Ratio
(50 Nodes, 20-CBR Flows, network
area (1500m x 300m)), GRB compared
with AODV.

Figure 3.6: Packet Delivery Ratio
(50 Nodes, 30-CBR Flows, network
area (1500m x 300m)), GRB compared
with DSR.

Figure 3.7: Packet Delivery Ratio
(50 Nodes, 20-CBR Flows, network
area (1500m x 300m)), GRB compared
with DSR.
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Figure 3.8: Average End-To-End De-
lay (50 Nodes, 30-CBR Flows, network
area (1500m x 300m)), GRB compared
with AODV.

Figure 3.9: Average End-To-End De-
lay (50 Nodes, 20-CBR Flows, network
area (1500m x 300m)), GRB compared
with AODV.

3.3.3 End-To-End Delay

As shown in Figures 3.8 and 3.9, the overall average end-to-end delay for AODV and

GRB are 22.17 milliseconds and 14.98 milliseconds, respectively. For each CBR flow,

we take the average end-to-end delay of all the packets received by the destination

node in that flow. Then, we take the average delay of all the CBR flows. Because of

its simplicity, GRB takes less time to deliver data packets in most of the scenarios.

As shown in Figures 3.8 and 3.9, packets take more than 18 milliseconds on average

to reach their destinations under AODV whereas GRB delivers packets in less than

16 milliseconds. We can see GRB delivers packets much faster when network size and

area is moderately small (50 nodes, (1500m x 300m) area). That is because most

of the packets find greedy paths which take less calculation time and the decision is

taken quickly based on the neighbors’ location information and their status regarding

whether or not they are valid next hops. However, under AODV, data packets should

wait for the route to be set up. Moreover, routes discovered under AODV may not

be shorter than those discovered under GRB, because GRB uses greedy approach.
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As a result, AODV results in higher average end-to-end delay.

3.3.4 Node Density

Since our protocol uses only information about neighbors in forwarding decision, as

node density increases, GRB keeps delivering higher fraction of data packets than

AODV and DSR as shown in Figures 3.10 and 3.11. That is because both AODV

and DSR depend on end-to-end route to forward data packets and that route is

affected by mobility of the nodes and the size of the network. Therefore, due to

mobility, more frequent link breaks occur leading to more route repair and setup and

as a result, packets are lost more frequently under AODV and DSR. However, since

the average end-to-end delay is taken only for packets that are delivered to their

destinations and because data packets follow existing routes which decreases waiting

time, AODV routes data packets in slightly less time than GRB when number of

nodes grows to more than 200 as shown in Figure 3.13. However, GRB is faster in

smaller networks (less density) because less computation required by nodes to make

forwarding decisions since nodes have less neighbors. Average hop count is another

parameter that we measure in this simulation to show that our protocol routes data

packets with less number of hops as node density increases. For this metric, only the

successfully delivered data packets are counted in the simulation results for both GRB

and AODV. As shown in Figure 3.12, in smaller networks (i.e., less than 150 nodes),

AODV uses less number of hops to forward data packets than GRB because there

are more voids in sparse networks. This makes GRB data packets to go around voids

through either next best hop or backtracking technique which makes GRB packets
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traverse more hops than AODV. However, as number of nodes increases, number of

voids decreases and data packets move through greedy paths; hence GRB uses less

number of hops than AODV in dense networks. It is worth mentioning that under

GRB, average hop count is also reduced because next hop is chosen greedily.

Figure 3.10: Packet Delivery Ratio
as Number of Nodes increases (Net-
work Area (1500x1500)), GRB com-
pared with AODV.

Figure 3.11: Packet Delivery Ratio
as Number of Nodes increases (Net-
work Area (1500x1500)), GRB com-
pared with DSR.

Figure 3.12: Average Hop Count as
Number of Nodes increases (Network
Area (1500x1500)), GRB compared
with AODV.

Figure 3.13: Average End-To-End as
Number of Nodes increases (Network
Area (1500x1500)), GRB compared
with AODV.

3.3.5 Network Diameter

Figures 3.14 and 3.15 present packet delivery ratio results and Figures 3.18 and 3.19

present average hop count results for 112-nodes and 200-nodes networks with same
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CBR traffic and same node density for both networks. In these simulations, the terrain

area within which nodes move are (2250x450) meters and (3000x600) meters respec-

tively. We also evaluated the effect of changing network diameter on success rate and

hop count for both GRB and AODV. The probability of an established route breaking

increases as the routes grow longer. GRB delivers higher percentage of packets than

AODV and DSR at all pause times on larger networks because GRB incurs no penalty

as the path length increases from source nodes to destination nodes. Moreover, GRB

recovers from loss of neighbor (next hop) instantaneously by simply finding another

candidate next hop which will take over the forwarding process. However, percentage

of packets delivered under AODV decreases considerably as the network diameter

increases because it needs to maintain longer end-to-end routes. DSR incurs higher

traffic overhead in wider networks since it needs to maintain longer end-to-end source

routes; hence its success rate decreases accordingly and it is much lower than that

of GRB as shown in Figures 3.16 and 3.17. For the hop count metric, we calculate

the average of all the received packets by all the destination nodes in all the flows for

both GRB and AODV routing protocols. In small areas, AODV has less hop counts

in higher mobility rates (i.e., lower pause times); however, GRB uses less hop counts

when node mobility decreases (i.e., higher pause times) because the Seen Table en-

tries will be more accurate as nodes remain for longer time in their current locations.

This gives GRB better chance to direct data packets through valid paths. In wider

networks (i.e., larger diameter), GRB uses less hop counts than AODV for all the

pause times (i.e., for low and high mobility rates) because in such networks, routes

established under AODV break more often due to longer end-to-end routes. Since
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same node density is used for both networks, it does not cost GRB any additional

calculation since forwarding decisions are made locally, so it remains using less hops

than AODV.

Figure 3.14: Packet Delivery Ratio of
Network Area (2250x450), 112 nodes,
30-CBR Flows, GRB compared with
AODV.

Figure 3.15: Packet Delivery Ratio of
Network Area (3000x600), 200 nodes,
30-CBR Flows, GRB compared with
AODV.

Figure 3.16: Packet Delivery Ratio of
Network Area (2250x450), 112 nodes,
30-CBR Flows, GRB compared with
DSR.

Figure 3.17: Packet Delivery Ratio of
Network Area (3000x600), 200 nodes,
30-CBR Flows, GRB compared with
DSR.

3.3.6 GRB Vs. GPSR

Even though we didn’t simulate GPSR, we used the performance results published

for GPSR in [8] and the results we obtained for GRB to compare the performance of

the two protocols. As stated in [8], GPSR performance evaluation counts only those
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Figure 3.18: Average Hop Count of
Network Area (2250x450), 112 nodes,
30-CBR Flows, GRB compared with
AODV.

Figure 3.19: Average Hop Count of
Network Area (3000x600), 200 nodes,
30-CBR Flows, GRB compared with
AODV.

packets for which a path exists to the destination. We used the same input settings

as those used for GPSR to compare the success rate. The settings are: 50 nodes, 30

CBR flows, pause times (PT) (0, 30, 60, and 120) seconds, area (1500x300) meters,

and node density (1node/9000m2). From the results presented in GPSR [8], successful

packet delivery rate (SPDR) of GPSR ranges from 95% to 99.10% for pause time 0

second, while GRB successfully delivers 98.93% of the total packets sent. When pause

time is 30 seconds, GPSR achieves success rates between 98.20% to 99.70% whereas

GRB achieves a success rate of 99.33%. When pause time is 60 seconds, GPSR

delivers from 98.70% to 99.40% of data packets sent, while GRB delivers 99.04% of

all packets. Finally, when pause time is 120 seconds, GPSR’s packet delivery rate

ranges from 98.60% to 99.40% and GRB’s packet delivery rate is 99.28%. The results

of the comparison is shown in Table 3.4.

As shown in Figure 3.20, for 50 and 112 nodes, pause times 0 and 60 seconds, areas

(1500x300) and (2250x450) meters, we see that GRB performs better than GPSR with

respect to Successful Packet Delivery Ratio (SPDR). We noticed that the performance
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Table 3.4: Input Settings and Corresponding Results for both GRB and GPSR

Nodes Network Area PT(s) SPDR(GRB) SPDR(GPSR)
50 1500m X 300m 0 98.98 97.04
50 1500m X 300m 60 99.07 98.16
112 2250m X 450m 0 98.00 97.50
112 2250m X 450m 60 98.54 98.25
200 3000m X 600m 0 97.02 95.00
200 3000m X 600m 60 96.84 97.50

Figure 3.20: GRB Vs. GPSR.

of our protocol in successfully delivering data packets is almost same as that of GPSR

in some cases and higher than GPSR in other cases. However, when greedy routing

fails due to a void in the direction of the destination, GPSR has to planarize the

local network graph and use it to route around voids. Planarizing the graph results

in computation overhead as well as routing failure. Figures 3.21, 3.22, and 3.23 show

how GRB successfully routes around voids where GPSR could not because of the

planarization and face routing problems discussed in Section 1.6. When face routing

fails because of unidirectional links as shown in Figure 1.4, under GRB, the first

packet follows the links labeled (1,2,3,4,5,6,7,8,9,10,11) to reach the destination as

shown in Figure 3.21. However, the remaining packets will be routed via the links
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Figure 3.21: GRB Succeeds when Unidirectional Links Cause Routing Failure.

Figure 3.22: GRB Succeeds when Disconnected Links Cause Routing Failure.

labeled (9,10,11) because the first packet backtracked from V to S. Hence, in the

Seen Table of the source S, it is stated that node V is an invalid next hop for the

destination D.

When planarization of the local network graph results in disconnected links as

shown in Figure 1.5, data packets under GRB follow the sold arrows (i.e. nodes

72



www.manaraa.com

Figure 3.23: GRB Succeeds when Cross Links Cause Routing Failure.

(N,V,C)) to reach the destination D as shown in Figure 3.22. When cross links

caused data packets to loop as shown in Figure 1.6, the first packet follows the

links labeled (1,2,3,4,5,6,7,8,9) under GRB as shown in Figure 3.23. Moreover, the

remaining packets follow the path labeled (6,7,8,9) towards D.

GRB neither requires planarizarion of local network graph nor it switches from

greedy mode to an alternative mode when a packet faces void; instead a node simply

selects the best next hop without imposing the condition that the next hop be closer

to the destination than itself. GRB depends on the Seen Table to determine the

next hop. Therefore, GRB needs less control information which makes it better and

robust. So, we can see the difference between GRB and GPSR in delivering data

packets is around 0.0066% in one scenario keeping in mind that GRB outperforms

GPSR in some other scenarios. When compared to the simplicity of GRB and the
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less control overhead GRB needs, this difference is negligible. It is worthy to recall

that we select CBR flows randomly without knowing whether there exists a route

corresponding to each flow. However, under GPSR, according to the authors: “Only

packets for which a path exists to the destination are included in the graph”.

Copyright c© Baban Ahmed Mahmood, 2016.
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Chapter 4 Hybrid On-demand Greedy Routing Protocol with

Backtracking for Mobile Ad-Hoc Networks

4.1 Introduction

Topology-based routing protocols which depend on the current topology of the net-

work can be classified into three main types, namely, proactive routing protocols,

reactive routing protocols (i.e., on-demand routing protocols), and hybrid routing

protocols [16, 89, 19]. Under proactive routing protocols (e.g., DSDV [13]), nodes

establish table-based routes [14] to all other nodes. This makes routes reliable and

nodes don’t wait for route discovery which decreases latency. On the other hand,

overhead incurred for maintaining up to date routes at each node limits scalability.

In addition to that, consume lot of memory especially when network size grows.

In on-demand routing protocols, senders build and maintain routes to destination

nodes only when they need it. On-demand routing protocols need less memory and

storage capacity than proactive routing protocols. However, in networks where nodes

are highly mobile, route discovery may fail since the path can be long and links may

break due to node mobility while establishing routes [16]. Routes can also break

during packet transmission due to mobility of nodes on established routes. The delay

caused by route discovery for each data traffic can increase latency (i.e., end-to-end

delay).
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4.1.1 Objectives

Many of the on-demand routing protocols such as DSR [33], and AODV [15] flood

route requests throughout the network which results in high control overhead due

to redundant propagation of route requests. On the other hand, geographic routing

protocols such as GPSR [8] and its variations do not require the establishment of

routes to the destination a priori for sending packets. Under geographic routing

protocols such as GPSR, each node receiving a data packet forwards the packet to

one of its neighbors that is closer to the destination than itself; different protocols use

different strategies for picking such a neighbor. If a node does not have such a neighbor

(we say there is a void in the direction of the destination), then it constructs the

graph of the local network and tries to route around the void using that graph. This

incurs additional overhead due to the construction of the graph. We address these

disadvantages of on-demand and geographic routing protocols and propose a novel on-

demand routing protocol, called Hybrid Greedy On Demand Routing Protocol with

Backtracking (HGRB). HGRB uses geographic approach for forwarding route requests

during route discovery. If the route request (RREQ) packet meets a void, it uses a

simple back-tracking approach to forward RREQs around the voids. Performance

evaluation shows that HGRB significantly outperforms both AODV and DSR.

In this chapter, we present a novel on-demand routing protocol which uses position-

based greedy forwarding with back-tracking for route discovery. Our protocol per-

forms better than some of the well-known on-demand routing protocols with respect

to control overhead, packet delivery ratio and the number of hops on the routes
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discovered.

The rest of this chapter is organized as follows. Section 4.2 presents the proposed

protocol (i.e., HGRB). In Section 4.3, we present the performance evaluation results

of our protocol.

4.2 The Proposed Protocol (HGRB)

In this section, we present a detailed description of our protocol.

4.2.1 Assumptions

We assume that all nodes have the same transmission range (i.e., all links are bidi-

rectional). We also assume that each node is equipped with a GPS and each node

can get the location of the destination node through an available Location Service.

We describe the basic idea behind HGRB next.

4.2.2 Basic Idea Behind HGRB

Under HGRB, when a source S needs to find a route to destination D, it picks the

best neighbor N1 and sends the route request (RREQ) packet to N1. The best

neighbor N1 is determined as follows: S picks the neighbor that is closer to the

destination than all of its other neighbors. Note that this neighbor may not be closer

to the destination than S itself because S may be facing a void in the direction of the

destination. If the RREQ packet backtracks from N1 to S, S picks the one that is

closest to the destination among the remaining neighbors, and this process continues

until all neighbors have been tried; if it cannot forward the RREQ packet through any
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of its neighbors, it simply concludes that there is no route to the destination. When

an intermediate node I receives the RREQ packet from a node N , it uses the same

strategy to pick a neighbor to forward the packet; if it fails to forward the RREQ

packet through any of its neighbors, it sends the packet back to N (i.e., the packet

backtracks). This process continues until the RREQ packet reaches the destination

or it has reached a pre-determined number of back-tracking. Section 4.2.3 explains

in detail how the next hop is selected for forwarding RREQs. Note that if the next

hop picked by a node for forwarding RREQ is closer to the destination than the node

itself, then forwarding is implicitly greedy; otherwise, the RREQ packet is forwarded

around the void using simple backtracking.

In case of backtracking, the nodes traversed backwards do not become part of

the route because they are considered invalid next hops. For example, in Figure 4.1,

when node S decides to discover a route to destination node D the RREQ packet first

takes the path (N1, N2, N3); However, N3 is invalid next hop. Therefore, the RREQ

backtracks to N1 from where N1 chooses N4 as a new next hop. Therefore, the route

from S to D discovered under HGRB will be (N1,N4,N5,N6). In this case, the nodes

traversed backwards (i.e., N2 and N3 ) are not part of the established route. This

helps in reducing the average hop count the data packets traverse.

Once the route is built between the source node and the destination node, data

packets are transmitted from the source node to the destination node via that route.

Under HGRB, a source node drops data packets if it has no neighbors or if it tried

to forward the RREQ packet through all its neighbors and failed.
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Figure 4.1: Route Setup Example.

4.2.3 Data Structures Used in HGRB

Nodes that participate in route discovery process maintain a Seen Table and a Route

Table which are used during route discovery and data forwarding. Each node also

maintains a Neighbor Table. How these tables are maintained and used is explained

next.

• Neighbor Table. This table contains the location information of its neighbor-

ing nodes. Each node sends a HELLO packet to all its neighbors in each time

interval T . This HELLO packet includes the node’s id as well as its position.

To minimize collision of HELLO packets due to concurrent transmissions, we

jitter each HELLO packet transmission interval by R milliseconds between

two successive transmissions of HELLO packets so that each node transmits

HELLO packets at a random time chosen in the interval [T −R, T +R]. When

a node receives a HELLO packet, it creates in its Neighbor Table an entry

containing neighbor identifier (NbrID), neighbor position, and lifetime of the

neighbor. The lifetime of an entry in this table is updated whenever the node

79



www.manaraa.com

receives any packet(RREQ, data, route reply packet, etc.) from the neighbor

associated with that entry.

• Seen Table. This table helps picking best neighbor for forwarding RREQ

packets to the destination. For that purpose, when a node receives a RREQ

packet, it stores the information about the packet in its Seen Table. As shown

in Table 4.1, each record of this table contains five fields, namely, neighbor

ID (NbrID), source address (Src), destination address (Dst), flag (Flag), and

lifetime (Lifetime). NbrID is the address of the neighboring node that has

sent the RREQ packet, forwarded the RREQ packet, or the node from which

the RREQ packet has backtracked. Src contains the address of the source

node that generated the RREQ packet. Flag indicates whether the received

RREQ packet is a new packet (i.e., forwarding mode) or it has backtracked

from a neighboring node (i.e., backtracking mode). This flag is set to FALSE

when the RREQ packet is in forwarding mode and set to TRUE when it has

backtracked. The lifetime field specifies the lifetime of the associated record.

When a node receives a RREQ packet, it creates a record in its Seen Table for

the neighbor from which the RREQ packet was received. A created record is

removed from the table When its lifetime expires.

• Routing Table. This table has five fields namely, Destination-Address, the

node to which the data packet, RREQ, or RREP is forwarded; Lifetime, the

age of the associated record in the routing table; Active, a Boolean field which

indicates whether the associated entry is active or not; if this field is set to
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True, then the related record can be used for forwarding either control or data

packets; Source indicates the source node that initiated the RREQ or a node

that initiated a route reply (i.e., either the destination or an intermediate node

that has an active route to the destination node). Sequence-Number, an integer

field associated with each RREQ. Details about setting up routing tables are

given in Section 4.2.4.

Best Next-Hop Selection and Verification

For selecting the next-hopN to forward a RREQ packet, the source or an intermediate

node S does the following. It picks the neighbor N that is closer to the destination

than any of the other neighbors that have not been considered for the next-hop

selection and does the following verifications.

• S looks up its Seen Table for N . If S has an entry for N with the same

associated source and destination addresses as that in the RREQ packet, then it

considers N as an invalid next hop for that packet and picks another neighboring

node as the next hop. This means that S has received this request from N which

is either a new request (i.e., flag is FALSE) or a backtracked request (i.e., flag

is TRUE), therefore, it cannot forward the RREQ packet to that node because

that would result in a loop. For example, in Figure 4.2, when node N3 receives a

RREQ from node N1, it creates an entry in its Seen Table as shown in Table 4.1.

This entry tells N3 that N1 is an invalid next hop because it has received the

same RREQ from N1 and as a result, the Seen Table prevents loop to occur
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between N3 and N1. However, the Seen Table of N1 does not have N3 as a

neighbor node so it can forward the RREQ packet to N3.

• S verifies with N if it is a valid next hop. If N is not in the Seen Table

of S, then S sends N a verification packet, with the same source-destination

pair in the header as in the RREQ packet’s header, asking N to check whether

it has seen RREQ packets with the same source-destination pair from any of

its other neighbors. When N receives the verification packet, it checks its Seen

Table for an entry that has the same source and destination addresses as those

in the verification packet, with a Flag set to False, but with a NbrID different

from the ID of S. If such an entry is found, it means that N has seen a RREQ

packet for the same source-destination pair from one of its other neighbors, and

it sends a reply back to S indicating that it is an invalid next hop. However,

if such an entry is found but the Flag is set to True, it means a neighbor N1

of node N has sent the RREQ packet back to N after N1 failed to forward

the RREQ packet. In this case, there may be neighbors of N other than N1

that were not checked to forward the RREQ packet yet, therefore N is not

considered as an invalid next hop and as a result, N sends a reply back to S

indicating that it is a valid next hop for that RREQ packet. After S finds N

to be a valid next hop, it forwards the RREQ packet to N . Otherwise, it picks

another neighbor as a new candidate for next hop and checks if it is a valid

next hop and so on. For example, in Figure 4.2, when N1 needs to send a

RREQ packet to N3, it sends a verification packet to N3. N3 checks its Seen
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Table for an entry with the NbrID set to any ID other than N1, with same

Src and Dst values as those in the verification packet, and Flag is set to False.

Since N3 does not have such an entry in its Seen Table (refer to Table 4.1), it

sends a positive reply (i.e., N3 is a valid next hop) to N1, and N1 forwards the

RREQ packet to N3. This verification process is necessary to prevent loops.

For example, when node N8 receives the RREQ back from node N9, after it

has verified with N2, N8 sends a verification packet to N1. N1 finds that it

has seen a request (i.e., an entry) with a NbrID set to S which is different from

N2, with same Src and Dst values as those in the verification packet, and the

Flag set to False (see Table 4.2). Therefore, N1 sends a negative response to

N8 indicating that N1 is an invalid next hop for that request. Therefore, N8

sends the request back to N2 which in turn sends the request back to N1. If

a node finds all its neighbors are invalid next hops, then the RREQ packet is

sent back to the node from which it was received.

• RREQ Packet backtracking. A RREQ packet backtracks from the current

node to its sender in the following two cases:

1. All the neighbors of the current node have seen that packet. This means

none of the neighbors could forward the packet.

2. The current node has no neighbors other than the sender. For example,

in Figure 4.2, N9 has no neighbors other than N8 which sent the request

packet to it. Therefore, the packet backtracks to N8 and N8 inserts a

new entry into its Seen Table as shown in Table 4.3. The Flag of the new
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entry (i.e., second row) is set to True which means that from the perspec-

tive of N8, N9 is considered an invalid next hop for that RREQ packet.

Therefore, when N8 tries to pick the next hop for the same destination

next time, it will not pick N9 if the Lifetime of the associated entry (i.e.,

second row in Table 4.3) in the Seen Table of N8 has not expired.

Figure 4.2: Route Setup Example.

Table 4.1: Seen Table at Node N3 in Figure 4.2

NbrID Src Dst Flag Lifetime
N1 S D False T

Table 4.2: Seen Table at Node N1 in Figure 4.2

NbrID Src Dst Flag Lifetime
S S D False T1

N2 S D True T2

Table 4.3: Seen Table at Node N8 in Figure 4.2

NbrID Src Dst Flag Lifetime
N2 S D False T1
N9 S D True T2
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Table 4.4: Routing Table at Node N8 in Figure 4.2

Dst-Addr Next-hop Lifetime Active Src Sequence-Number
S N2 T False False Seq

Table 4.5: Routing Table at Node N5 in Figure 4.2

Dst-Addr Next-hop Lifetime Active Src Sequence-Number
S N4 T True False Seq
D D T True False Seq

4.2.4 Route Discovery and Maintenance

In many of the existing on-demand routing protocols, when a source node wants to

find a route to a destination, it broadcasts a RREQ message to all its neighbors. Every

node that receives the RREQ message rebroadcasts the RREQ to all its neighbors.

This method results in flooding broadcasts and incurs large overhead. In order to

minimize such overlapped broadcasts, HGRB unicasts RREQ as follows: when a

node needs to forward a RREQ packet, it picks the best neighbor N as described in

Section 4.2.3 and sends the RREQ packet to that neighbor. When N receives the

RREQ packet, it looks up its routing table to see whether it has an unexpired route

to the destination node. If so, it sends a route reply (RREP) back to the source node.

Otherwise, it forwards the RREQ to its next best neighbor. Since HGRB does not

enforce the next-hop N to be closer to the destination than the sender S, N is either

closer to D than S (i.e., Greedy mode), or farther away from D than S. However, the

next-hop N must be closer to D than any other neighbor that has not seen a RREQ

packet to the same source-destination pair.
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Reverse Path Setup

When the RREQ propagates from a source node to its destination, it builds the

reverse route from each node in the path back to the source node. When a node

receives a RREQ from a neighbor node, it records the address of that neighbor,

establishing the next hop on the route to the source node. If the receiving node is

neither the desired destination nor it has an active route to the destination node, it

forwards the RREQ to the next best hop as explained in Section 4.2.3. For example,

when node N8 in Figure 4.2 receives a RREQ from node N2, it creates an entry in

its routing table as shown in Table 4.4, and forwards the RREQ to the next hop N9.

However, since N9 has no neighbors other than N8, N9 sends the RREQ back to

N8. Even though it receives a RREQ from N9, N8 does not create a reverse path for

that request because it is a RREQ packet that backtracked. The reverse path entries

are maintained for a lifetime long enough for the RREQ to reach the destination and

produce a reply to the source node.

Route Setup

When a RREQ arrives at the destination node or an intermediate node that has a

valid route for the desired destination node, the receiving node N initiates a route

reply. N unicasts a RREP packet back to the node from which it received the RREQ.

By the time the RREQ arrives at N , a reverse path (see Section 4.2.4) from N to the

source node (i.e., the node that initiated the RREQ) has been established. As the

RREP propagates to the source node along the path traversed by the RREQ, each
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intermediate node sets up the next hop to destination node. In that case, the Active

field of the associated entry will be set to True indicating that the corresponding

record can be used for data forwarding. For example, in Figure 4.2, when node N5

receives the RREP packet from nodeD, it inserts a forwarding entry to the destination

D as shown in Table 4.5. Once the RREP arrives at the source S, it can start data

transmission. It is noteworthy to mention that nodes which send back RREQ to

previous nodes during route discovery are not considered part of the route. This

feature reduces the number of hops the data packets will travel through

after a route is established between source and destination. The dashed line

in Figure 4.2 is the route created from S to D through the route setup process and

it does not include nodes N2, N8 and N9 since these nodes sent the RREQ back to

N1.

Route Maintenance

When an established route breaks due to a node’s movement on the path, route

discovery is re-initiated by the source node if it still needs a route. When either an

intermediate node or the destination node moves, the source node is notified through

a special control packet sent by the node at which the route broke; the source node

stops sending data packets through that broken route and re-initiates a new route

discovery.
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4.3 Performance Analysis

In this section, we present the performance evaluation results of HGRB compared to

AODV [15] and DSR [33]. We first describe the simulation environment and then

discuss the simulation results. We simulated HGRB, AODV, and DSR on a variety

of network topologies.

4.3.1 Simulation Environment

We used GloMoSim [88], a network-simulation tool for studying the performance of

routing protocols for MANETs, for evaluating the performance of HGRB. We chose

IEEE 802.11 and IP as the MAC and network layer protocols, respectively. All

nodes are assumed to have fixed transmission range of 250 meters. We used the

implementation of AODV that comes with the GloMoSim 2.0.3 package to compare

its performance with HGRB. We ran several simulations on a set of traffic flows.

Various topologies used for simulation are shown in Table 4.6; each simulation lasted

for 900 seconds of simulated time. The nodes were distributed uniformly at random

in the network area.

Table 4.6: Topology used for Simulation

Nodes Network Area CBR Flows Packets Sent
50 1500m X 300m 30 8780
50 2000m X 2000m 30 8780
100 2500m X 2500m 30 8780

{50,100,150,200,250} 1500m X 1500m 30 8780
50 1500m X 300m 20 5168
50 2000m X 2000m 20 5168
100 2500m X 2500m 20 5168

{50,100,150,200,250} 1500m X 1500m 20 5168
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4.3.2 Performance Metrics

We used the following three metrics to evaluate the performance of HGRB under

various mobility model, node density, and network diameter.

1. Packet Delivery Ratio: The ratio of the data packets delivered to the desti-

nations to those generated by the Constant Bit Rate (CBR) flow sources.

2. Hop Count: Average number of hops a data packet traverses to reach the

destination.

3. Control Overhead: Total number of routing control packets sent during the

entire simulation.

In this experiment, we varied the number of nodes simulated from 50 to 250. We

used 20 and 30 CBR random traffic flows in the simulation. Each CBR flow sends

packets at a speed of 2Kbps and uses 64-byte packets. Depending on the start time

and end time of each sender in each flow, different number of packets are sent by

different CBR flows. However, in each flow, each sender sends a packet every 0.25

second. Node mobility is set using random Way-point [33] model. Under this model,

each node travels from its current location to a random destination at a random

speed, the speed being uniformly distributed in a predefined range. After a node

reaches its destination, it pauses for a predetermined amount of time and then moves

to a new randomly chosen destination at a randomly chosen speed. In our simulation,

the speed randomly chosen lies between 0 and 20 meters/second. In order to study

how mobility affects the performance of HGRB, we selected pause times of 0, 20,
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40, 60, 80, and 100 seconds. When the pause time is 0 seconds, every node moves

continuously. As the pause time increases, the network approaches the characteristics

of a fixed network.

Figure 4.3: Packet Delivery Ratio
As Mobility Changes (50 Nodes,
30 CBR, network area (1500m
x 300m)), HGRB compared with
AODV.

Figure 4.4: Packet Delivery Ratio
As Mobility Changes (50 Nodes,
20 CBR, network area (1500m
x 300m)), HGRB compared with
AODV.

Figure 4.5: Packet Delivery Ratio
As Mobility Changes (50 Nodes,
30 CBR, network area (1500m
x 300m)), HGRB compared with
DSR.

Figure 4.6: Control Overhead
as Mobility Changes (50 Nodes,
30 CBR, network area (1500m
x 300m)), HGRB compared with
AODV.

4.3.3 Mobility

In this scenario, we evaluated HGRB with respect to the three metrics as node mobil-

ity changes from 0 to 20 meters/second. We selected CBR flows randomly; hence it is

not known whether there is a valid path between the source node and the destination
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Figure 4.7: Control Overhead
as Mobility Changes (50 Nodes,
20 CBR, network area (1500m
x 300m)), HGRB compared with
AODV.

Figure 4.8: Control Overhead
as Mobility Changes (50 Nodes,
30 CBR, network area (1500m
x 300m)), HGRB compared with
DSR.

Figure 4.9: Average Hop Count
as Mobility Changes (50 Nodes,
30 CBR, network area (1500m
x 300m)), HGRB compared with
AODV.

Figure 4.10: Average Hop Count
as Mobility Changes (50 Nodes,
20 CBR, network area (1500m
x 300m)), HGRB compared with
AODV.

node for each flow. Higher number of packets (refer to Table 4.6) imposes higher

demand on routing protocols as higher traffic is generated between source, destina-

tion pairs. HGRB does not broadcast RREQ packets for route establishment as in

AODV and DSR. Since both AODV and DSR broadcast RREQ, the network can

be overwhelmed with frequent rebroadcasting of RREQs that may collide and drop.

This reduces successful establishment of routes which in turn reduces packet delivery

ration. Therefore, HGRB delivers higher number of data packets than AODV for

various pause times as shown in Figures 4.3 and 4.4; it delivers much higher number
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Figure 4.11: Packet Delivery Ra-
tio as Node Density Increases
(Network area (1500m x 1500m)),
30 CBR, HGRB compared with
AODV.

Figure 4.12: Packet Delivery Ra-
tio as Node Density Increases
(Network area (1500m x 1500m)),
20 CBR, HGRB compared with
AODV.

Figure 4.13: Packet Delivery Ra-
tio as Node Density Increases
(Area (1500m x 1500m)), 30 CBR,
HGRB compared with DSR.

Figure 4.14: Number of Hops
as Node Density Increases (Area
(1500m x 1500m)), 30 CBR,
HGRB compared with AODV.

of data packets than DSR for all pause times as shown in Figure 4.5.

Also, as shown in Figures 4.6, 4.7, and 4.8, control overhead for HGRB is much

lower than that of AODV and DSR. This is because of the broadcast feature of

AODV and DSR to establish routes. Since HGRB does not use broadcast for prop-

agating RREQs, it incurs less control overhead compared to AODV and DSR. Fig-

ures 4.9 and 4.10 compare the number of hops on the routes through which HGRB and

AODV successfully deliver data packets. Since HGRB propagates RREQs Greedily,

the length of the routes found under HGRB are shorter especially in dense networks
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Figure 4.15: Number of Hops as
Node Density Increases (Network
area (1500m x 1500m)), 20 CBR,
HGRB compared with AODV.

Figure 4.16: Control Overhead as
Node Density Increases(Network
area (1500m x 1500m)), 30 CBR,
HGRB compared with AODV.

Figure 4.17: Control Overhead as
Node Density Increases(Network
area (1500m x 1500m)), 20 CBR,
HGRB compared with AODV.

Figure 4.18: Control Overhead as
Node Density Increases(Network
area (1500m x 1500m)), 30 CBR,
HGRB compared with DSR.

(i.e., network without voids). This makes HGRB discover routes with less number of

hops on average than those found by AODV.

4.3.4 Node Density

In this scenario, to study the effect of node density on the three metrics described

in 4.3.2, we varied the number of nodes from 50 to 250 in a network area of (1500m

x 1500m). As node density increases, HGRB delivers higher fraction of data packets

than AODV and much higher fraction of data packets than DSR as shown in Fig-

ures 4.11, 4.12, and 4.13. This is because unlike AODV and DSR, HGRB does not
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Figure 4.19: Packet Delivery Ra-
tio in Network Area (2000m x
2000m), 30 CBR, HGRB com-
pared with AODV.

Figure 4.20: Packet Delivery Ra-
tio in Network Area (2000m x
2000m), 30 CBR, HGRB com-
pared with DSR.

Figure 4.21: Packet Delivery Ra-
tio in Network Area (2000m x
2000m), 20 CBR, HGRB com-
pared with AODV.

Figure 4.22: Packet Delivery Ra-
tio in Network Area (2500m x
2500m), 30 CBR, HGRB com-
pared with AODV.

broadcast RREQs and nodes only use their neighbor information to forward RREQs.

Whereas in AODV and DSR, each node rebroadcasts the RREQ which causes high

traffic especially in dense networks. Therefore, RREQs need to wait for long time be-

fore being rebroadcast by intermediate nodes. This may lead to dropping the RREQs

which in turn lead to lower data packet delivery ratio than HGRB.

As shown in Figures 4.14 and 4.15, average number of hop counts on routes estab-

lished by HGRB is less than those established by AODV. Since there are more voids

in sparse networks, the difference in average hop count between the two algorithms is

small in sparse networks. However, as the network becomes denser, number of voids

94



www.manaraa.com

Figure 4.23: Packet Delivery Ra-
tio in Network Area (2500m x
2500m), 30 CBR, HGRB com-
pared with DSR.

Figure 4.24: Packet Delivery Ra-
tio in Network Area (2500m x
2500m), 20 CBR, HGRB com-
pared with AODV.

Figure 4.25: Control Overhead in
Network Area (2000m x 2000m),
30 CBR, HGRB compared with
AODV.

Figure 4.26: Control Overhead in
Network Area (2000m x 2000m),
20 CBR, HGRB compared with
AODV.

decreases and HGRB forwards RREQ packets through greedy paths; hence routes

established by HGRB have significantly less number of hops than AODV in dense

networks. Moreover, control overhead incurred by HGRB is less than that of AODV.

As shown in Figures 4.16, 4.17, and 4.18, HGRB has almost constant control overhead

as number of nodes increases from 50 to 250. On the other hand, AODV and DSR

incur significantly higher control overhead than HGRB as node density increases.
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Figure 4.27: Control Overhead in
Network Area (2500m x 2500m),
30 CBR, HGRB compared with
AODV.

Figure 4.28: Control Overhead in
Network Area (2500m x 2500m),
20 CBR, HGRB compared with
AODV.

Figure 4.29: Control Overhead in
Network Area (2000m x 2000m),
30 CBR, HGRB compared with
DSR.

Figure 4.30: Control Overhead in
Network Area (2500m x 2500m),
30 CBR, HGRB compared with
DSR.

4.3.5 Network Diameter

We studied the effect of network diameter on packet delivery ratio, hop count, and

control overhead. Figures 4.19, 4.20, 4.21, 4.22, 4.23, and 4.24 present packet delivery

ratio results for HGRB, AODV, and DSR. Figures 4.25, 4.26, 4.27, and 4.28 show

control overhead for 50-nodes and 100-nodes for HGRB and AODV. Figures 4.29

and 4.30 show the control overhead of HGRB compared with DSR for 100-nodes.

Figures 4.31, 4.32, 4.33, and 4.34 present average hop count results for HGRB and

AODV.
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Figure 4.31: Average Hop
Count in Network Area (2000m
x 2000m), 30 CBR, HGRB
compared with AODV.

Figure 4.32: Average Hop
Count in Network Area (2000m
x 2000m), 20 CBR, HGRB
compared with AODV.

Figure 4.33: Average Hop
Count in Network Area (2500m
x 2500m), 30 CBR, HGRB
compared with AODV.

Figure 4.34: Average Hop
Count in Network Area (2500m
x 2500m), 20 CBR, HGRB
compared with AODV.

Copyright c© Baban Ahmed Mahmood, 2016.
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Chapter 5 SAriadne: A Secure Source Routing Protocol that Prevents

Hidden-Channel Attacks

5.1 Introduction

Nodes in a Mobile Ad Hoc Network (MANET) form a network among themselves

without the use of any fixed infrastructure (i.e., no centralized administration) such

as access points or base stations, and communicate with each other by cooperatively

forwarding packets on behalf of others. MANETs have applications in areas such as

military, disaster rescue operations, monitoring animal habitats, etc. where estab-

lishing communication infrastructure is not feasible [16, 23, 27, 24, 25].

Routing protocols designed for MANETs can be broadly classified as geographic

routing protocols (e.g., GPSR [8]) and topology-based routing protocols. Topology-

based routing can be classified into proactive routing protocols like DSDV [13] in

which nodes use pre-established table-based routes [14], reactive (on-demand) routing

protocols (e.g., AODV [15]), and hybrid routing protocols [16, 89, 19].

There are two main functions in routing: route discovery and data forwarding.

The first one is concerned with finding routes between nodes, while the latter uses

these routes to forward data packets. Informally, a secure routing protocol enables

nodes to exchange control information and data in the presence of adversaries whose

objective is to disrupt the functioning of the routing protocol. Several mechanisms

have been proposed to provide secure routing in MANETs ([20] presents a survey of
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secure routing protocols).

Due to their special characteristics, MANETs are more vulnerable to attacks than

infrastructure based networks. There are two main categories of attacks, namely,

passive attacks and active attacks [90]. In passive attacks, adversarial nodes do not

disrupt the operation of routing protocols, whereas in active attacks, adversarial

nodes disrupt network operations as well as they perform effective violations. They

can control the flow of the network traffic by injecting incorrect control information

during route discovery. Adversarial nodes can disrupt at different stages including

route discovery phase, route maintenance phase, and data forwarding phase.

An adversarial node can disrupt the route discovery by offering a better route

than a route offered by a genuine node to disrupt packet delivery. Under this type

of attack, a malicious node modifies routing control information or specific routing

metrics. Another type of attack is done using impersonation (i.e., spoofing) wherein

adversarial nodes hide their identities (e.g., real IP address or MAC address) and use

other identities to launch sophisticated attacks.

5.1.1 Objectives

Our focus is mainly on security issues related to source routing protocols (e.g.,

SRP [46], Ariadne [21], endairA [3], etc.). As we point out in Section 5.2, both

Ariadne [21] and endairA [3] are prone to hidden channel attacks that target the

route discovery. In this chapter, we propose a novel secure source routing protocol

called Secure Ariadne (SAriadne) that establishes a secure and valid route. SAriadne

uses sanitizable signatures [91] to prevent these attacks.
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The rest of the chapter is organized as follows: In Section 5.2, we present the

hidden channel attacks on the related protocols. In Section 5.3 we discuss Chameleon

Hash functions and Sanitizable Signatures which are needed in the design of the

proposed protocol. In Section 5.4, we present our protocol. In Section 5.5, we analyze

and discuss how our protocol prevents hidden channel attacks.

5.2 Hidden Channel Attacks on the Discussed Source Routing Protocols

In this section, we present a brief review of the attacks against the algorithms pre-

sented in Section 2.5.

Figure 5.1: A Sample Network Configuration Wherein an Attack Exists Under SRP
[4].

5.2.1 Attack on SRP

In this section, we discuss how SRP is prone to hidden channel attack discovered

in [4]. We use the network configuration in Figure 5.1 to illustrate how SRP is prone

to hidden channel attack, in which A is an adversarial node. Let us assume that the

node S in Figure 5.1 initiates a route request to discover a route to the target T .

When V receives the request for the first time, it rebroadcasts the request. Thus, A

receives the request mV from V , where
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mV = (rreq, S, T, id, sn, (Q, V ),macS),

where id is the request id, sn is a sequence number, and macS is the MAC computed

by S using the key it shares with T . A, the adversaial node, then inserts an arbitrary

sequence of identifiers λ into the request and broadcasts it in the name of X as follows

mA = (rreq, S, T, id, sn, (Q, V,W, λ,X),macS).

The adversarial node A cannot guarantee that the pair V and W and the pair X and

Y are neighbors; however, since the nodes (i.e., V ,W ,X, and Y ) in these pairs are

neighbors of A, A makes a guess that V and W , as well as X and Y are neighbors. Y

is a neighbor of both A and X and the node list ends with X; hence, when Y receives

mA, Y appends its id to the node list in the request, and rebroadcasts the updated

request mY , where

mY = (rreq, S, T, id, sn, (Q, V,W, λ,X, Y ),macS).

When the target T receives the request from K, after it successfully verifies macS,

T computes its MAC (i.e., macT ) over the route and unicasts the reply mT via the

nodes in the route request in the reverse order where

mT = (rrep, S, T, id, sn, (Q, V,W, λ,X, Y,K),macT ).

When the intermediate node Y forwards mT to node X, node A overhears the trans-

mission. A then forwards the message mT to V in the name of W . Since W and V are

neighbors, V believes the message is from W and forwards it to Q which in turn sends

it to S. S then successfully verifies macT and accepts the route (Q, V,W, λ,X, Y,K)

which is clearly an invalid route.

Thus, the SRP is susceptible to hidden channel attack.
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Figure 5.2: A Sample Network Configuration Wherein an Attack Exists on Ariadne
with Signatures [4].

5.2.2 Attack on Ariadne with Signatures

Buttyán and Vajda [4] discovered an attack against Ariadne with signatures presented

in Section 2.5.3. Figure 5.2 shows part of the network configuration wherein the

adversarial node A launches an attack on the route discovery. Suppose that the

source S (in Figure 5.2) sends a route request towards the target T . A receives the

request mV from node V , where

mV = (rreq, S, T, id, hV , (Q, V ), (sigQ, sigV )),

and does not rebroadcast the request. Also, A receives request mX from node X,

where

mX = (rreq, S, T, id, hX , (Q, V,W,X), (sigQ, sigV , sigW , sigX)).

A obtains hV from mV and the signatures sigQ, sigV , and sigW from mX . A also

knows that W and V are neighbors from mX . A then computes its per-hop hash

value (i.e., hA = H(A,H(W,hV ))), where H is the publicly known hash function. A

then uses this information to generate and broadcast the request mA, where

mA = (rreq, S, T, id, hA, (Q, V,W,A), (sigQ, sigV , sigW , sigA)).

When the target T receives the request, T verifies the signatures and creates a route

reply mT and sends it back to S, where

mT = (rrep, T, S, (Q, V,W,A, Y ), (sigQ, sigV , sigW , sigA, sigY , sigT )).
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When A receives mT , it forwards it to V in the name of W which in turn forwards it

to Q. When S receives the reply, it validates all the signatures and accepts the route

(Q, V,W,A, Y ), which is an invalid route because A and W are not neighbors.

Thus, Ariadne with signature protocol is susceptible to hidden channel attack.

Figure 5.3: A Sample Network Configuration wherein an Attack Exists on Ariadne
with MAC[3].

5.2.3 Attack on Ariadne with MAC

Ács et al. [3] found an attack on Ariadne with MAC presented in Section 2.5.4.

Consider the network configuration shown in Figure 5.3, wherein S initiates a route

request to find a route to the target T , and X and Y are adversarial nodes that

collude. X, the first adversarial node, receives the request mA, where

mA = (rreq, S, T, id, hA, (A), (macA)).

Instead of appending its MAC, X puts hA on the MAC list and rebroadcasts the

request mX . X does that because Y will need this hash value to omit the nodes

between X and Y .

mX = (rreq, S, T, id, hA, (A,X), (macA, hA)).

Because intermediate nodes do not verify the MACs, the intermediate node B does

not detect this attack. The second adversarial node Y receives the route request mC ,

where

mC = (rreq, S, T, id,H(C,H(L,H(M,H(B, hA)))), (A,X,B,M,L,C),
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(macA, hA,macB,macM ,macL,macC)).

Then, Y drops the nodes (B,M,L,C) from the node list and their corresponding

MACs from the MAC list (i.e., (macB,macM ,macL,macC)). Y can do that because it

knows that the request has passed through the first adversarial node X by recognizing

X in the node list. Y also could get hA from the MAC list by determining the position

of X in the node list. Hence, Y computes hY = H(Y, hA), needed to omit the nodes

(B,M,L,C), and its MAC macY on the modified request. Then Y rebroadcasts the

modified request mY that is received, updated, and rebroadcast by D, where

mY = (rreq, S, T, id, hY , (A, Y ), (macA,macY )).

When T receives the request, it validates the MACs and the per-hop hash value in

the request, generates a reply mT , and sends it back to S, where

mT = (rrep, S, T, (A, Y,D, T ),macT ).

When Y receives mT , it re-inserts the dropped nodes into the node list and forwards

the modified reply mY rrep to C

mY rrep = (rrep, S, T, (A,X,B,M,L,C, Y,D, T ),macT ).

Since the intermediate nodes B,M,L,C do not verify mY rrep, each of them forwards

the reply mY rrep. When X receives the reply, it removes the nodes B,M,L,C and

its id from the list and forwards the reply mXrrep to A, where

mXrrep = (rrep, S, T, (A, Y,D, T ),macT ).

When S receives the mXrrep , it computes the MAC over the fields preceding the macT

in route reply and verifies if it is same as macT that was computed by T ; if it is, then

it accepts the route as a valid route, even though it is an invalid route.

Thus, the Ariadne with MAC protocol is susceptible to hidden channel attack.
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Figure 5.4: A Sample Network Configuration wherein an Attack on the Optimized
Version of Ariadne with Iterated MAC Exists.

5.2.4 An Attack on the Optimized Version of Ariadne with Iterated MAC

In this section, we discuss how optimized version of Ariadne with iterated MAC is

prone to attack from adversarial nodes. This attack is first presented in [3], and

briefly described in [92]. Consider the network configuration in Figure 5.4, in which

the source S needs to find a route to the target T , and X and Y are adversarial

nodes that collude to launch and attack. The first adversarial node X receives a

route request mA from the node A, where

mA = (rreq, S, T, id, (A),macSA),

X computes its MAC (i.e., macSAX) over mA after appending its id to the node list

in the request and then broadcasts the updated request mX , where

mX = (rreq, S, T, id, (A,X),macSAX).

When B and C receive mX , they update the request and broadcast the corresponding

route request. Y does not respond to either requests coming from B or C. A little

later, X creates a route reply mXrrep in the name of Y and unicasts it to B, where

mXrrep = (rrep, S, T, id, (A,X,B, Y ),macSAX).

Note that the MAC in this fake reply is wrong (i.e., it was not computed by the

target). B only checks the id of the reply and that both X and Y are its neighbors.

Since B has previously received request mX with id same as that included in this
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reply mXrrep , it retransmits mXrrep to X. Y intercepts mXrrep whose MAC is macSAX

which is needed by Y to remove B. Y then creates and broadcasts route request mY ,

where

mY = (rreq, S, T, id, (A,X, Y ),macSAXY ).

Node D receives this request, appends its label to the node list, computes its MAC,

and rebroadcasts the updated request mD, where

mD = (rreq, S, T, id, (A,X, Y,D),macSAXYD).

T receives mD and verifies the iterated MAC macSAXYD. Since macSAXYD was

correctly constructed, T accepts it, generates a route reply mT , and sends it back to

the source S, where

mT = (rrep, S, T, id, (A,X, Y,D),macT ).

When D receives mT , it accepts it because D’s label is in the list and both T and Y

are neighbors of D. When Y receives mT from D, it adds the label for C to the node

list and sends the modified message mYrrep to C, where

mYrrep = (rrep, S, T, id, (A,X,C, Y,D),macT ).

Node C accepts the message and forwards it to X. When X receives mYrrep , it removes

the label of C from the node list and forwards the modified message to S which in

turn successfully verifies the reply. However, the verified reply does not contain a

valid route.

In this attack, to remove the node B or C from the node list, the second adversarial

node Y needed the macSAX which was computed by X in the message mXrrep . Y

needs this MAC in order to compute macSAXY . Therefore, the adversarial nodes

X and Y successfully shortened the route to become (A,X, Y,D) which is invalid
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because X and Y are not neighbors.

Thus, the optimized version of Ariadne with iterated MAC is susceptible to hidden

channel attack.

Figure 5.5: A Sample Network Configuration Wherein an Attack Exists in endairA.

5.2.5 Attack on endairA

Mike et al. [92] found an attack on endairA [3], presented in Section 2.5.6. Consider

the network configuration shown in Figure 5.5 in which the source S needs to find

a route to the target T . In this configuration, nodes X and Y are adversarial nodes

and they collude to remove B from the node list of the route request. Under endairA,

the second adversarial node Y receives a route request mB from node B, where

mB = (rreq, S, T, id, (A,X,B)).

Since endairA does not authenticate route requests, Y drops node B from the node

list contained in mB and boadcasts the modified route request mY ,where

mY = (rreq, S, T, id, (A,X, Y )).

When T receives the route request, it generates a secured route reply and unicasts it

back to S. The second adversarial node Y receives the reply mDrrep from D, where

mDrrep = (rrep, S, T, id, (A,X, Y,D), (sigT , sigD)).

If Y signs the reply and forwards it to B, B will discard it because its id is not in

the node list. Also, S validates the route reply only if every node in the node list

returned in route reply has signed the reply. Therefore, the first adversarial node
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X needs the signature list (sigT , sigD, sigY ). Since X and Y are adversarial nodes,

they could have shared their private information. This means that X can reconstruct

the digital signature of Y (i.e., sigY ) . Now, Y needs to find a mechanism through

which it can deliver the signatures sigT and sigD to X. Suppose that the node D

had previously issued a route request mDrreq with a request id id
′

to discover a route

to node A. Therefore, Y must have received mDrreq from D

mDrreq = (rreq,D,A, id
′
, ()).

Since route requests are not secured, Y can exploit the previous request from D to A

to deliver the signatures (i.e., (sigT and sigD)) to X. To do that, Y modifies the id

id
′

of the request mDrreq into some other id id
′′

such that it contains information that

X can use to reconstruct the signatures sigT and sigD. This information can also be

encrypted. Intermediate nodes do not detect this modification and rebroadcast the

request. When X receives this request, it reconstructs the signatures, generates route

reply mX , and forwards it to A which in turn signs the reply and forwards it to S,

where

mX = (rrep, S, T, id, (A,X, Y,D), (sigT , sigD, sigY , sigX)).

The source S then verifies that each individual signature was calculated correctly by

the corresponding nodes and accepts (A,X,Y ,D) as a valid route.

Thus, endairA protocol is susceptible to hidden channel attack.

5.3 Preliminaries

In this section, we review Chameleon Hash functions and Sanitizable Signatures

needed in the design of the proposed protocol.
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5.3.1 Chameleon Hash Functions without Key Exposure

Chameleon hash functions have the same characteristics of any cryptographic hash

function with a trapdoor property, which allows the computation of collisions and

second pre-images once the trapdoor information is known.

Ateniese and Medeiros [93] proposed a chameleon hash with a key exposure free-

ness property by introducing a label (L) which is fully committed to the signature

together with the original identity of the recipient to receive the message from the

signer. The key exposure free chameleon hash function is defined by the following set

of algorithms:

• Key Generation (KeyGen): A probabilistic algorithm that accepts a security

parameter κ as input, and outputs a (secret key, public key) pair (sk,pk) as

follows

KeyGen : 1κ −→ (sk, pk))

• Hash: A function that accepts a public key pk, a label L, a message m and

an auxiliary random parameter r as input, and outputs a bitstring C of fixed

length τ as follows

Hash : (pk,L,m, r) −→ C ∈ {0, 1}τ

• Universal Forge (Uforge): A function that accepts the secret key sk (associated

with public key pk), a label L, a message m and an auxiliary parameter r as

input, and computes another message m′ and random parameter r′ as follows

UForge(sk,L,m, r) −→ (m′, r′)
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such that

Hash(pk,L,m, r) = C = Hash(pk,L,m′, r′)

• Instance Forge (IForge): A function that accepts a public key pk, a label L,

and two pairs of a message and an auxiliary random parameter (m, r,m′, r′) as

input, and computes another collision message m′′ and random parameter r′′

as follows

IForge(pk,L,m, r,m′, r′) −→ (m′′, r′′)

such that

Hash(pk,L,m, r) = C = Hash(pk,L,m′, r′) = Hash(pk,L,m′′, r′′)

The above mentioned function ensures the following security requirements:

• Collision-Resistance, which means that given only pk, L, m and r, there is no ef-

ficient algorithm that can find a second pairm′, r′ such that C = Hash(pk,L,m, r) =

Hash(pk,L,m′, r′).

• Semantic Security, which means that the chameleon hash value C does not

reveal anything about the possible message m that was hashed.

• Key Exposure Freeness, which means that given C = Hash(pk,L,m, r) there is

no efficient algorithm that can find a collision (i.e., a second pair m′, r′ mapping

to the same digest C) if a recipient with public key pk has never computed a

collision under label L.

Now, we describe the algorithms which create practical instances by using cryp-

tographic primitives from a discrete log-based (DL) cryptosystem to construct an
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efficient chameleon hash trapdoor commitment scheme providing key exposure free-

ness as presented in [93].

The scheme consists of three efficient algorithms: Key Generation Algorithm,

Hash Calculation Algorithm, and Collision Finding Algorithm.

Key Generation Algorithm

An algorithm that takes a security parameter λ as input and outputs system

public parameters params = 〈p, q, g,H〉, where

• p and q are primes, p = 2q + 1,

• g is a generator of the subgroup of quadratic residues Qp of Z∗p,

• andH : {0, 1}∗ 7→ {0, 1}τ is a collision-resistant hash function mapping arbitrary-

length bitstrings to strings of fixed length τ .

The recipient chooses as secret key x at random in [1,q-1], and computes the

corresponding public key as y = gx.

Hash Calculation Algorithm

An algorithm that takes a public key y, message m, and random values (r, s) ∈

Zq x Zq then computes e = H(m, r) and C ← Hash(m, r, s) = r−(yegsmod p)mod q.

Collision Finding Algorithm

An algorithm that takes a hash output C, a random message m′, and a random

value k′ ∈ [1, q − 1] then computes a collision (m′, r′, s′) as follows
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r′ = C + (gk
′
mod p) mod q

e′ = H(m′, r′)

s′ = k′ − e′x mod q

such that C = Hash(m, r, s) = Hash(m′, r′, s′)

5.3.2 Sanitizable Signatures

The Sanitizable Signature scheme proposed by Ateniese el al. [91] allows a node

to modify designated portions of the document and produce a valid signature on

the legitimately modified document without any help from the original signer. The

designated portions are indicated as mutable which are subject to a prior agreement

between the signer and the node. However, a sanitizable signature scheme can be

weakly transparent which means verifiers can identify which parts of the message are

potentially sanitizable and, consequently, which parts are immutable.

The terms ’censor’ and ’target’ are used interchangeably in the rest of the chapter.

A sanitizable signature scheme is defined by the following set of algorithms:

• Key Generation Algorithm: A probabilistic algorithm to compute the Signer’s

two public-private key pairs: pkSsign and skSsign (for a standard digital signature

algorithm) and the Censor’s two public-private key pairs pkTsanit and skTsanit (for

sanitization steps).

• Signing Algorithm: A deterministic algorithm which takes as input a message

m, a private signing key skSsign, a public sanitization key pkTsanit, random coin

r, and produces a signature σ as follows

σ ← SIGN(m, r; skSsign, pk
T
sanit)
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• Verification Algorithm: A deterministic algorithm that, on input of a message

m, a possibly valid signature σ on m, a public signing key pkSsign and a saniti-

zation key pkTsanit, outputs TRUE or FALSE as follows

V ERIFY (m,σ; pkSsign, pk
T
sanit)→ {TRUE,FALSE}

• Sanitization Algorithm: A deterministic algorithm that, on input of a message

m, a signature σ on m using public signing key pkSsign, a private sanitizing key

skTsanit, and a new message m′, produces a new signature σ′ on m′ as follows

σ′ ← SANIT (m,σ,m′; pkSsign, sk
T
sanit)

The above mentioned scheme meets the following security requirements:

• Correctness which means that the verification algorithm must accept a signature

produced by the signing algorithm.

• Unforgeability which means that it is difficult to produce a valid signature on a

message that verifies against the associated public key without the knowledge

of the private signing key.

• Identical Distribution which means that σ values produced by the sanitization

algorithm are distributed identically to those produced by the signing algorithm.

5.4 The Proposed Protocol

In this section, we present our secure on-demand routing protocol based on Sanitizable

Signatures called SAriande. This protocol prevents the Hidden Channel Attacks on

the optimized version of Ariadne and the endairA protocol presented in Sections 5.2.4
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and 5.2.5, respectively. In the following subsections, we present the details of our

protocol.

5.4.1 Protocol Setup

In our protocol, we use the sanitizable signature [91] constructed based on the

chameleon hashes presented in [93]. The two pairs of keys used in our protocol

are the (private, public) signing keys (skSsign, pkSsign) of the source S, and the (private,

public) sanitizing keys (skTsanit, pk
T
sanit) of the target T . To avoid confusion, SIGN(.)

is used for the sanitizable signature and Sig(.) is used for the underlying signature

algorithm. We assume that every node has the public key of both the signer and

sanitizer. The basic idea behind the route request propagation and the route reply

propagation of our protocol is similar to that in the optimized version of Ariadne,

but we prevent hidden channel attacks using sanitizable signature.

5.4.2 Basic Idea Behind the Protocol

There are different attacks and security issues associated with routing in MANETs

(e.g., black hole attacks, Gray hole attacks, jamming attacks, blackmail attacks,

Byzantine attacks, overwhelming attacks, hidden channel attacks, etc.) [94, 21]. How-

ever, our main focus in this chapter is to design a routing protocol that prevents

hidden channel attacks discussed in Section 2.5. We mainly consider the cases where

adversarial nodes are not neighbors (e.g., the attack shown in Section 5.2.4).

We use sanitizable signature [91] to detect and prevent hidden channel attacks.

The source node signs the route request using its private key skSsign and the public

114



www.manaraa.com

sanitizing key pkTsanit of the target. This sanitizable signature is weakly transpar-

ent [91] to all the nodes in the network. It will be sanitized by the target T using T ’s

private sanitizing key skTsanit.

Since this signature is weakly transparent, every other node can verify modifica-

tions in the sanitizable portion of the message. This helps every node verify whether

the reply is coming from the target node T . Therefore, no malicious node can imper-

sonate the target T . This prevents the hidden channel attack during the propagation

of the route request to the target node.

5.4.3 Basic Route Discovery

When a source node S needs to discover a route to a target T , it broadcasts a route

request. To do that, S generates a message m and a signature σ on m using an

algorithm called SIGN , described in Section 5.3.2. The route request message MS

initiated by S and targeted to T contains eight fields: (route request, message m,

sanitizable signature σ, source, target, request id, node list, MAC list). The source

and the target fields are set to the addresses or identifiers of the source and the target

nodes, respectively. The request id identifies the route request. As in Ariadne [21],

the source S initializes the node list and MAC list to empty lists. S creates a message

m = (m1, ...,mt) that is partitioned into t blocks for some constant t and initializes m

to (request id, message id, source, target, sanitizable-portion of the message), where

m = (id,mID, S, T, sanitizable− portion).

The source S decides which portions, say mi1 , ...,mik , can be modified by the target

T . The source computes the chameleon hash, CHpkTsanit
(.), using the target’s public
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key pkTsanit for all mi where i ∈ {1, ..., t} as follows

m̄i =


CHpkTsanit

(mID||i||mi, ri)if i ∈ {i1, i2, ..., ik},

mi||i otherwise

To sign m̄, where m̄ = (m̄1, m̄2, ..., m̄t), S uses a Signing Algorithm similar to that

presented in Section 5.3.2. S signs m̄ with its private signing key skSsign and the public

sanitization key pkTsanit of the target T . The SIGN algorithm takes m̄, the private

signing key of the source skSsign, the public sanitizaiton key of the target pkTsanit, and

a random coin r as input and produces the signature σ, where

σ = SIGN(m̄, r; skSsign, pk
T
sanit) = SigskSsign(mID||t||pkTsanit||m̄1||...||m̄t).

Then S broadcasts the route request MS, where

MS = (rreq, m̄, σ, S, T, id, (), ()).

The route request Mj forwarded by an intermediate node Xj, 1 ≤ j ≤ n, on the route

S = X0,X1,...,Xn,Xn+1 = T is of the form

Mj = (rreq, m̄, σ, S, T, id, (X1, ..., Xj), (macSX1 ...Xj
)).

macSX1 ...Xj
is the MAC computed by Xj with the key it shares with T on the route

request Mj−1 received from Xj−1, where

Mj−1 = (rreq, m̄, σ, S, T, id, (X1, ..., Xj−1), (macSX1 ...Xj−1
)).

When the intermediate node Xj receives the route request that is intended to a target

T , Xj verifies the signature σ using a Verification Algorithm, VERIFY, explained in

Section 5.3.2, where

V ERIFY (m̄, σ; pkSsign, pk
T
sanit) −→ {TRUE,FALSE} .
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This verification is necessary to prevent the hidden channel attack on endairA men-

tioned in Section 5.2.5. If the signature is valid, Xj checks whether it has received

the same request by checking the source id, target id, and request id. It discards

the request if it has been received before. If not, Xj appends its address Xj to the

Node List and replaces the macSX1 ...Xj−1
with macSX1 ...Xj

as explained above; Xj

then rebroadcasts the route request Mj.

When the target T receives the route request, first it verifies the signature σ using

the verification algorithm VERIFY, and then it validates the nodes in the list by

recomputing all the intermediate MAC values. If these verifications are successful,

T sanitizes the message m̄ using its private sanitization key skTsanit (as explained in

Section 5.3.2) and generates a message m̄′. For all m̄i where i in {1, ..., t},

m̄′ =


CHskTsanit

(mID||i||m′i, r′i) for i ∈ {i1, i2, ..., ik},

m̄i||i otherwise

The mutable portion of the message m will be replaced with the nodes in the

Node List.

The sanitizing algorithm SANIT takes as input m̄, the signature σ on m̄, the

modified message m̄′, the public signing key pkSsign of the source S, and the private

sanitizing key skTsanit of the target T to generate the sanitized signature σ′, where

σ′ ← SANIT (m̄, σ, m̄′; pkSsign, sk
T
sanit).

T then generates a route reply message MT which consists of the ids of source and

target, the request id, the Node List (i.e., the accumulated route obtained from the

request), the modified message m̄′, and the sanitized signature σ′, where
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MT = (rrep, m̄′, σ′, S, T, id, (X1, ..., Xn)).

Unlike Ariadne [21], the target does not compute the MAC over the reply because

the reply is authenticated using sanitized signature σ′. The reply is then sent back

to S on the reverse route included in the route request. When each node Xj in the

Node List receives the reply, it verifies the sanitized signature σ′ of the target, using

V ERIFY (m̄′, σ′; pkSsign, pk
T
sanit) −→ {TRUE,FALSE} .

If this test returns FALSE, Xj discards the reply. If it returns TRUE, Xj verifies

that the mutable portion of the message has been modified (i.e., the signature has

been sanitized) by the target. If not, then Xj discards the reply. If both these tests

succeed, Xj unicasts the reply message to Xj−1, 1 ≤ j ≤ n, on the reverse route T =

Xn+1, Xn,Xn−1,...,X1,X0 = S. Weak transparency of the sanitizable signature gives

intermediate nodes the ability to verify whether the signature has been sanitized by

T .

When S receives the reply, it checks whether the sanitized signature σ′ passes the

verification using VERIFY ; if so, the source accepts the route; otherwise, it discards

it. Unlike Ariadne [21], the source does not need to recalculate the corresponding

MAC of each intermediate node since the authentication is done through the sanitized

signature σ′.

Figure 5.6 shows the steps involved in route discovery under our protocol when

the source tries to discover a route to the target node T and the route request goes

through the intermediate nodes (A,B,C) before reaching T . Figures 5.7 and 5.8

respectively show the formal descriptions of how both route requests and route replies

at intermediate nodes are processed in our protocol.

118



www.manaraa.com

Figure 5.6: An Illustration of Route Discovery Under our Protocol. The
source S tries to find a route to the target node T .

Figure 5.7: Handling of Route Request by an Intermediate Node Xj.
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Figure 5.8: Handling of Route Reply by an Intermediate Node Xj

5.5 Analysis and Discussion of the Attacks Detected by the Proposed

Protocol

In this section, we discuss and show how our protocol prevents the hidden channel

attacks on the protocols presented in Section 5.2.

5.5.1 Detecting and Preventing the Hidden Channel Attack on SRP

In SRP, intermediate nodes can easily inject invalid identifiers into route requests and

forward them to a target T which in turn verifies these non-existent nodes correctly.

This is possible because intermediate nodes neither check the source’s MAC nor they

append their own MACs to the route request. This kind of attack can be detected

by our protocol. Consider the attack explained in Section 5.2.1, when the adversay

A inserts the arbitrary sequence of identifiesr λ, under our protocol, the node list

cannot pass the verification done by the target. Therefore, our protocol prevents

such attacks.
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5.5.2 Detecting and Preventing the attack on Ariadne with Signature

In this case, the adversarial node removes a node from the Node List (i.e., the route)

such that the target can still validate the route (see Section 5.2.2). In Ariadne with

Signature (see Section 2.5.3), each node appends the signature generated over the

fields of the received route request. This gives ability to adversarial nodes (e.g., node

A in Figure 5.2) to reconstruct the signatures when they receive multiple requests

before rebroadcasting any of them. This signature technique leads to information

leakage (attack) like the one presented in [4] as explained in Section 5.2.2. However,

this attack is prevented by our protocol. When the iterating MAC is used, the

adversarial node cannot reconstruct the MAC using multiple requests. Let’s go back

to Figure 5.2, where S initiates a route request to discover route to T , A receives the

following two messages from nodes V and X respectively under Ariadne

msg1 = (rreq, m̄, σ, S, T, id, (Q, V ),macSQV ), and

msg2 = (rreq, m̄, σ, S, T, id, (Q, V,W,X),macSQVWX).

Now, from message msg2 A knows that V and W are neighbors, and A needs to

create a message like this

msg3 = (rreq, m̄, σ, S, T, id, (Q, V,W,A),macSQVWA).

A needs to broadcast this message so that the target can validate all the intermediate

nodes with their corresponding keys. However, in order to do that (i.e., to remove X

from the route), A needs to get the iterated MAC calculated by W (i.e., macSQVW )

which is protected by W ’s key. Therefore, A cannot remove X unless it knows the

secrete key of W to calculate W ’s MAC (i.e., macQVW ) and as a result, msg3 cannot
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be created. Thus, our protocol prevents hidden channel attacks.

5.5.3 Detecting and Preventing the Attack on Basic Ariadne with MAC

Adversarial nodes in this scheme remove a node or a sequence of nodes located be-

tween two of the adversarial nodes as explained in Section 5.2.3. Intermediate nodes

in Ariadne with MAC append their calculated MAC values to a list of MACs giving

adversaries enough spaces to shorten the real route between source and target nodes.

Consider the attack presented in Section 5.2.3, when the request arrives at the sec-

ond adversarial node Y (see Figure 5.3), it drops the sequence (B,M,L,C) from the

request.

Now, let’s assume that the adversarial node can successfully remove the sequence

mentioned above from the route request and the request arrives at T . Now, under

our protocol, this attack is detected as follows. The target T puts the node list in

the sanitizable position of the sanitizable signature which in turn can be verified by

each intermediate node. The accumulated route that is sanitized in this example

is (A, Y,D) after Y has dropped the intermediate nodes (B,M,L,C). Y cannot

re-insert the hidden nodes (i.e., (B,M,L,C)) into the route reply received from D

because each of these nodes can verify the sanitized signature which was computed

by T on the received path (i.e., node list). If Y does so, the first node C in the node

list will detect Y as an adversarial node because the sanitized signature will not be

successfully verified. This prevents the reply from arriving at the source and hence,

non-plausible routes are not created. Thus, our protocol prevents this type of hidden

channel attacks.
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5.5.4 Detecting and Preventing the attack on the Optimized Version of

Ariadne with Iterated MAC

The iterating MAC calculated at each intermediate node is the most efficient scheme

among the other flavors of Ariadne to prevent attacks. However, this optimized

version is also prone to hidden channel attacks as discovered in [92] and presented in

Section 5.2.4. This is because under this version of Ariadne, intermediate nodes check

neither iterated MACs calculated by intermediate nodes nor the MAC computed by

the target T .

In our protocol every node verifies that the signature is sanitized, hence, when a

route reply arrives at intermediate nodes, it will be forwarded only if the verification

of the sanitized signature succeeds.

Now, let’s explain how our method prevents the hidden channel attack. Consider

the hidden channel attack against Ariadne presented in Section 5.2.4; we notice that

the adversarial node Y (see Figure 5.4) needs the iterating MAC (macSAX) that was

broadcast by the other adversarial node X. But since there is an extra channel, B,

between X and Y , X needs to impersonate Y and unicast a fake reply to B such that

when B forwards the reply to X, Y can intercept the reply and extract the MAC

generated by X (i.e., macSAX).

Now when X creates a fake route reply in the name of Y and unicasts it to B [92]

(see Section 5.2.4), B checks the signature and finds it is not sanitized because T

has not received the route request yet, hence B detects that Y is an adversarial node.

Thus, our protocol prevents hidden channel attacks present in optimized Ariadne with
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iterated MAC.

Then, after the reply is sanitized by T , the route reply cannot be tampered with

by an intermediate node. The source or the next upstream/downstream intermediate

node to the adversarial node can detect the modification, hence the route reply arrives

intact at the source S.

It is noteworthy to mention that we use one signature that is signed by the source

S and sanitized by the target T . This signature is verified by the intermediate nodes

in the request phase as well as by those in the reply phase. This important feature

makes the proposed routing protocol securely propagate route requests towards target

nodes (downstream flow) and also securely forward route replies towards source nodes

(upstream flow) at a cost of one signature which is more cost effective than other

schemes in which each node uses its own individual signature.

5.5.5 Detecting and Preventing the attack on endairA

The endairA protocol secures route replies by digitally signing but does not secure

route requests. Therefore, adversarial nodes need a strategy to hide control informa-

tion while route replies are forwarded to source nodes. Therefore, the attack found

in [92] on endariA presented in Section 5.2.5 was based on this strategy. The adver-

sarial node Y (Figure 5.5) needs to send the signature list (i.e., (sigT , sigD, sigY )) to

the other adversarial node X so that the source S accepts the reply. It is assumed

that there has been a route discovery initiated by node D towards the target A prior

to the route discovery from S to T . Y uses this previous route discovery to hide the

signature list in the id of the route request so that X can reconstruct the required
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information (i.e., (sigT , sigD, sigY )) from the modified id. The main reason for this

attack is that route requests are not secured.

This attack is prevented by our protocol because the main part m (Section 5.4.3)

of route requests in our protocol is authenticated, where

m = (id,mID, S, T, sanitizable− portion).

As explained in Section 5.4.3, m, which is an intrinsic part of the request, is signed

by the source S using the sanitizable signature. Each intermediate node verifies this

sanitizable signature, which is part of the request, before forwarding the request.

Now, to detect the attack on endairA, we go back to the scenario mentioned

in Section 5.2.5 and briefly explained above. When the second adversarial node Y

modifies id′ of the request into some other identifier id
′′

to contain the signatue list, the

main portion of the route request gets modified. This modification yields a signature

different from the one sent the route request; hence, when the neighbor nodes of Y

(i.e., intermediate nodes) receive this request, they discard it because the signature

cannot be verified. Therefore, the modified request cannot travel any further beyond

the neighbors of Y which means Y cannot communicate with X using invalid request

information. As a result, this verification prevents such attacks which in turn means

that our protocol prevents hidden channel attack present in endairA.

Copyright c© Baban Ahmed Mahmood, 2016.
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Chapter 6 Summary and Conclusion

In this chapter, we present a summary and conclusion of the protocols presented in

this dissertation.

Many of the geographic routing protocols designed for MANETs either totally or

partially depend on the idea of greedy forwarding in which packets are forwarded in

the direction of the destination node. A neighbor node that is closer to the destina-

tion than the current node is picked as the next hop of the packet. However, this

technique cannot always guarantee packet delivery since nodes may be non-uniformly

distributed in the network resulting in dead ends or voids. Dealing with voids in the

network is an important factor when designing a geographic routing protocol. Many

protocols uses the right hand rule (face routing) as a recovery procedure to cope with

that problem. Face routing provides a notable remedy to dead end problems but at

the cost of building a planar graph of the network of local neighbors at each node and

the cost of slightly increased end-to-end delay. Also, there are situations where, un-

der face routing, packets cannot go around voids. We proposed a geographic protocol

called GRB that solves this problem.

In Chapter 3, we presented GRB, a simple low-overhead position-based routing

protocol which consistently and successfully delivers high percentage of data pack-

ets. We compared the performance of GRB with well known position-based protocol

GPSR, the on-demand routing protocol AODV, and the Dynamic Source Routing

(DSR) protocol. Our performance evaluation shows that GRB performs as good as
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GPSR (with low overhead) and better than AODV and DSR under most scenarios.

Unlike GPSR, GRB does not need to construct planar graphs to route around voids;

it simply picks the best next hop to forward the data packets; hence GRB is simple.

On the other hand, it achieves comparable packet delivery ratio to GPSR and AODV;

hence it is robust.

We note from the detailed description of the protocol (see Section 3.2) that data

packets are forwarded greedily. When greedy forwarding fails, GRB picks the next

best hop based on simple heuristics without incurring large computation overhead,

unlike GPRS. A packet can come back (backtrack) to its sender/forwarder if the

next hop picked for forwarding packet could not use any of its neighbors to forward

the packet. This feature makes GRB solve the dead end problem while, in some

situations, GPSR fails.

In chapter 4, we presented HGRB, a simple low-overhead hybrid on-demand rout-

ing protocol that combines features of geographic routing protocols and topology

based routing. HGRB consistently and successfully delivers high percentage of data

packets at lower routing control overhead. We compared the performance of HGRB

with the well-known on-demand routing protocol AODV and DSR. Our performance

evaluation shows that HGRB performs better than AODV and DSR with respect to

all metrics.

We evaluated the performance of HGRB in different terrain areas within which

nodes move with different node density and node mobility patterns. The probability

of a route breaking increases as the routes grow longer in a highly mobile environment.

HGRB’s packet delivery ratio is higher than AODV and DSR at all mobility modes on
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larger networks because HGRB uses only local topology information to forward RREQ

packets; hence no penalty for HGRB as the path length increases from source nodes to

destination nodes. To study the number of hops on established routes, we calculated

the average hop count on the routes of all the received packets under all the flows for

both HGRB and AODV. In small areas, the number of hops on routes established

by AODV are comparable to that of HGRB; however, HGRB uses significantly less

hop counts when network density increases because chances for RREQ packets to

propagate through greedy paths is higher which in turn reduces the hop count. The

routing control overhead for AODV and DSR is much higher than HGRB especially

in high mobility environments (i.e., lower pause times) because routes break more

frequently and that costs higher volumes of RREQ packets under both AODV and

DSR. However, since RREQ packet forwarding decisions are made locally in HGRB,

no additional cost is incurred for path discovery in low and high mobilities which

makes HGRB superior to both AODV and DSR in routing control overhead.

In chapter 5, we discussed how some of the secure routing protocols proposed for

MANETs are in fact not secure, and presented a novel, secure routing protocol for

MANETs called SAriadne. SAriadne relies on sanitizable signature, a scheme that

allows other parties to sanitize the signature so that the original signer and other

intermediate nodes can validate the sanitized signature. It detects and prevents

hidden channel attacks for MANETs. The security mechanism we designed is general

and can be applied to any source routing protocol. A comprehensive analysis of the

hidden channel attacks on SRP, Ariadne, and endairA is provided and we showed

how our protocol detects and prevents these hidden channel attacks.
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